当前位置:首页 > 消费电子 > 消费电子
[导读]设计了一种应用于音频和传感领域的高精度低功耗的Sigma-Delta调制器。该调制器采用四阶单环一位的CRFF结构,通过开关电容型全差分电路的使用,减小了偶次谐波、衬底以及电源噪声,以及斩波技术的使用,降低了直流失调和低频噪声,达到了提高精度和降低功耗的目的。本设计采用Global foundries 0.18μm CMOS工艺,电源电压为1.8 V,过采样率为128,采样时钟频率为5.12 MHz。仿真结果表明,该调制器信噪比达100.2 dB,整个调制器的功耗仅为380 μW。

摘要 设计了一种应用于音频和传感领域的高精度低功耗的Sigma-Delta调制器。该调制器采用四阶单环一位的CRFF结构,通过开关电容型全差分电路的使用,减小了偶次谐波、衬底以及电源噪声,以及斩波技术的使用,降低了直流失调和低频噪声,达到了提高精度和降低功耗的目的。本设计采用Global foundries 0.18μm CMOS工艺,电源电压为1.8 V,过采样率为128,采样时钟频率为5.12 MHz。仿真结果表明,该调制器信噪比达100.2 dB,整个调制器的功耗仅为380 μW。

随着半导体集成电路制造工艺的不断发展,片上系统(SOC)已成为设计技术发展的主流,并在手持音频设备和传感器等领域得到了广泛的应用。众所周知,SOC设计是基于大量可重用的知识产权模块(IP)基础上。在这些IP中,模数转换器(ADC)因处于连接模拟和数字信号的桥梁位置而受到关注。由于手持设备中的电池容量有限,又对音质等有较高要求,所以ADC的设计重点在于低功耗和高转换精度。在各种类型的ADC中,Sigma—Delta ADC是实现中低速、高精度ADC的首选,尤其在传感器和语音处理等领域得到了广泛的应用。

本文设计了一个应用于音频和传感器领域的四阶单环一位前馈型的Sigma—Delta调制器(Sigma—DeltaADC的核心部分),通过开关电容型全差分电路的使用,有效减小了偶次谐波、衬底以及电源噪声;通过斩波技术的使用,降低了直流失调和低频噪声(主要是1/f噪声),达到了提高信噪比的目的。该调制器采用Global Foundries 0.18μm CMOS工艺实现,电源电压为1.8 V,过采样率128,时钟频率5.12 MHz。仿真结果表明调制器的信噪比达100.2 dB,整个调制器功耗为380μW,满足低功耗和高精度的设计要求。

1 Sigma-Delta调制器系统设计

1.1 系统结构和参数的设计

Sigma—Delta调制器有3个重要的系统参数,分别位为量化器位数M,系统阶数L,以及过采样率OSR。这些参数的不同组合,构成略有差异的量化噪声整形效果。带内残留噪声总能量,与OSR的2L+1幂次成反比关系。从而增加OSR,或增加L均能明显降低残留噪声。增加量化器位数 M,将减少量化阶梯。但若量化器的位数超过1位,反馈器件间存在不匹配性,将降低系统转换精度。要使用动态器件随机算法(DER)才能消除不匹配性,这会设计增加难度,从而本设计选用1位量化器。

Sigma—Delta调制器传递函数主要包括反馈结构(CRFB)和前馈结构(CRFF)。这两种结构均可实现积分器的输出信号中仅处理噪声分量,但实现条件不同。在CRFF中,需满足的条件是bi=0(2≤i≤L),相反在CRFB中需满足的条件是ai=bi(i≤L)。对比之下,CRFF结构需要更少的信号支路,从而需要更少的开关和电路,降低了支路上的噪声和积分器输出信号的幅值,从而减小整个Sigma-Delta调制器的功耗。因此,从低功耗的角度,本设计采用CRFF结构,如图1所示。

综上分析,为实现设计目标,即转换精度在98 dB以上,以及留出一定的余量,最终选择的能够实现设计目标的解决方案是:OSR=128(OSR通常为2的N幂次),L=4,M=1,CRFF结构。选取系统传递函数NTF的带外增益Hinf=1.45(经验值|Hinf|<1.5),通过Matlab DStoolbox对NTF传递函数进行综合,得到整个系统系数。

1.2 系统电路的设计

根据Matlab模型,结合系统工作时序,音频Sigma—Delta调制器电路系统框图,如图2所示。根据音频Sigma—Delta 调制器中系统框图,共需10个时钟控制信号,分别为:S1,S2,S1d,S2d,Sch1,Sch2,Sch1d,Sch2d,CLK,CMP。前面4 个时钟保证系统采样积分能正常工作;中间4个时钟完成chopper的功能,后面2个时钟为比较器时钟。时钟S1,S2为非重叠两相位时钟。 S1d,S2d分别为S1,S2的上跳变相同,下跳变延迟时钟,后面几组时钟类似。

在系统中,4个OTA组成4个级联的积分器。积分器的增益由积分电容与采样电容比值决定。每一个积分器的输出,有一条前馈回路至量化器。参考信号 VREF+,VREF-反馈到第一个OTA的输入。量化器在S1相位即将结束时比较输入端信号幅值的相对大小,实现了对模拟输入信号的数字转换。在S2相位,依据当前输出数字信号,反馈VREF+或VREF-到第一级OTA的输入,形成负反馈。第一级OTA的4个斩波开关用来实现斩波技术,将低频噪声和直流失调被调制到高频段,最终被Sigma—Delta ADC的滤波器滤除掉,从而提高Sigma—Delta调制器的信噪比,也使其能应用于超低频传感领域。

2 Sigma-Delta调制器电路模块设计

2.1 第一级采样电容

采样电容取值,取决于系统设计目标。过大的采样电容,将给运算放大器等具体电路设计增加难度。相反,由于电容热噪声,过小的采样电容,将增加电容热噪声密度。在两相位差分系统中,经过推导得到的采样电容取值表达式可写为

其中,Vin,peak为输入满幅信号幅值,于是得到采样电容的最小取值Cs=1.63 pF。

2.2 其它电容

其他级热噪声均有被系统整形,带内残留的噪声很小,采样电容取值在1 pF以下即可。为取值简单起见,文中将二、三、四级的积分电容都定为1 pF,然后根据积分系数便可确定各级采样电容的大小。前馈支路热噪声同样有被系统整形,电容取值也在1 pF以下。

2.3 运算放大器

本文选择有较大输出电压摆幅的全差分型折叠式共源共栅的OTA进行设计。本文设计的四阶调制器中,OTA的增益通常应高于60 dB,对于折叠共源共栅式结构的运放来说基本都能够达到要求。OTA的增益带宽积GBW通常取时钟频率的3~5倍,为节省功耗,增益带宽积应该尽量取小,但过小会降低积分器的积分精度、产生谐波失真等问题。因此,要在功耗和增益带宽积中进行折中处理。共模反馈电路一般分为开关电容型(SC)和连续时间型 (CT)。采用开关电容型共模反馈能够有效节省功耗,并且不会限制主运放的输出摆幅。

2.4 比较器

一位量化器通常由比较器构成。比较器一般分为静态锁存比较器、甲乙类锁存比较器和动态锁存比较器。相对于静态锁存比较器、甲乙类锁存比较器,动态锁存比较器由于动态特性使其具有更低的功耗,有利于降低芯片的整体功耗。因此,本文采用动态锁存比较器,其结构如图4所示,主要由预放大运放和锁存器构成。比较器由两个反相非交叠时钟控制,其中CLK为比较器工作时钟,CMP为比较时钟,时序如图4所示。

2.5 开关

在开关电容电路中,由于开关的非理想因素,存在导通电阻,影响电路的性能。为提高电路的线性度,一般采用传输门结构的CMOS开关,其结构如图5所示。这种结构的开关可提供轨到轨的反相输出,比单个MOS管开关具有更好的线性度。因此,本文调制器中的开关均选用CMOS开关。在设计时,通过设置合理的参数,使得NMOS管和PMOS管的导通电阻相等,这样并联后可得到最小的CMOS开关导通电阻。

3 结果及分析

本设计电路基于Global foundries 0.18μm CMOS工艺,电源电压为1.8 V,过采样率为128,时钟频率为5.12 MHz。Sigma-Delta调制器频域特性曲线如图6所示。仿真结果表明,通过斩波技术的使用,把输入信号和开关型方波信号耦合再经同步解调后,信号的频谱不变,而低频噪声和直流失调被调制到高频段,最终被Sigma—Delta ADC的滤波器滤除掉,从而有效降低了直流失调和低频噪声,一方面保证调制器的精度,另一方面也使设计能够应用于低频传感器领域;通过开关电容型全差分电路的使用,有效减小了偶次谐波、衬底以及电源噪声,从而保证了整个调制器的精度;通过采用CRFF结构减少了信号支路,从而减少了开关和电路的数量,减低了支路上的噪声和积分器输出信号的幅值,从而使整个Sigma—Delta调制器的功耗显著降低,整个调制器的功耗仅为380μW,信噪比达100.2 dB,达到了高精度和低功耗的设计目的。

4 结束语

本文设计了一个应用于音频和传感器领域的四阶单环一位前馈型的Sigma—Delta调制器。该调制器采用Global foundries 0.18μm CMOS工艺实现,电源电压为1.8 V,过采样率128,时钟频率5.12 MHz。仿真结果表明,调制器的信噪比达100.2 dB,整个调制器功耗仅为380μW。通过斩波技术的使用,降低了直流失调和低频噪声,达到了提高信噪比的目的。通过开关电容型全差分电路的使用,有效减小了偶次谐波、衬底以及电源噪声,达到了提高精度和降低功耗的目的,满足高性能和低功耗的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

ILaS收发器INLT220Q集成 DC/DC 控制器,为汽车内饰和功能照明应用提供直接电池供电

关键字: LED照明 传感器 集成电路

4月22日消息,中国第一季度半导体产量激增40%,标志着成熟制程芯片在中国市场的主导地位日益巩固。

关键字: 半导体 传感器 人工智能 电动汽车

在科技日新月异的今天,传感器技术作为现代工业、汽车、航空航天等领域的关键组成部分,发挥着越来越重要的作用。其中,电子叻力角度传感器以其独特的结构和性能,成为众多应用场景下的理想选择。本文将深入剖析电子叻力角度传感器的结构...

关键字: 电子叻力角度传感器 传感器

随着农业科技的不断进步,氮磷钾传感器作为一种现代化的农业生产工具,正逐渐走进广大农户的视野。它能够实时测量土壤中的氮、磷、钾元素含量,为农民施肥提供科学依据,从而避免不必要的浪费,减少环境污染,提高施肥的精准度。然而,关...

关键字: 氮磷钾传感器 传感器

空气压力传感器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对空气压力传感器的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 传感器 压力传感器 空气压力传感器

本文中,小编将对焦距予以介绍,如果你想对它的详细情况有所认识,或者想要增进对焦距的了解程度,不妨请看以下内容哦。

关键字: 焦距 传感器

本文中,小编将对手机重力感应予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 重力感应 传感器 重力传感器

4月17日消息,去年,中国大陆的半导体设备支出约占据了全球总额的三分之一。

关键字: 半导体 传感器 人工智能 电动汽车

在下述的内容中,小编将会对压力传感器的相关消息予以报道,如果压力传感器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 传感器 压力传感器

随着各行各业自动化程度的提高,运动控制的重要性日益凸显。为了有效地驱动电机,描述速度和位置的控制输入必不可少。然而,实现这种感测的技术有多种,每种技术都有不同的特点和应用场景。

关键字: 传感器 电机 自动化
关闭
关闭