当前位置:首页 > 智能硬件 > 智能硬件
[导读]摘要:为了实现UAV的舵机和油门调节控制的需要,飞控计算机系统采用BURR—BROWM公司的D/A芯片DAC7725N来设计D/A扩展模块。使用CPLD实现接口逻辑,简化了电路设计,后续的系统调试验证表明,D/A转换通道在1 000

摘要:为了实现UAV的舵机和油门调节控制的需要,飞控计算机系统采用BURR—BROWM公司的D/A芯片DAC7725N来设计D/A扩展模块。使用CPLD实现接口逻辑,简化了电路设计,后续的系统调试验证表明,D/A转换通道在1 000 Hz的刷新频率下,精度能够达到5.8 mV,完全能够满足UAV飞行控制系统实际应用的要求,具有较高的实用性。

关键词:数模转换;DAC7725N;DSP28335;复杂可编程逻辑器件

模拟量控制和PWM控制是当前无人机舵机控制系统最常用的两种控制方式。其中模拟量控制作为一种传统控制方式,至今仍被广泛应用,绝大多数的飞行控制计算机都提供模拟量输出通道,因此,D/A转换模块是飞行控制计算机中必备的功能模块之一。DSP28335片上没有DAC模块,所以必须使用片外扩展。

DAC模块设计涉及D/A转换芯片的选择、参考电压源的配置、数字输入码与模拟输出电压的极性等问题,而其中最核心的问题是D/A转换芯片的选择与应用问题,主要需要考虑的技术指标有分辨率和建立时间等。本文选用BURR—BROWM公司的D/A转换芯片DAC7725N实现此功能。

DAC7725是一款高输出电压和低功耗的D/A转换器件,产品功耗低(最多250 mW)、建立时间快(10μs)、线性度和单调性为12 bit,接收12位并行输入数据,采用双缓冲输入逻辑,提供数据回读模式。DAC的低功耗,小体积使DAC7725特别适合于闭环伺服控制系统。

1 总体设计方案

本系统采用TI公司的高性能数字信号处理器TMS320F28335(DSP28335)作为中央处理单元。该款DSP芯片提供高性能并行外设扩展接口XINTF,对外提供具有标准时序的片选、读/写控制信号;同时提供32位数据总线、20位地址总线,并且提供3个独立的片选信号,扩展能力强,使用方便。

因为单片DAC7725N提供4通道模拟量输出,本系统使用两片DAC7725N扩展得到8路模拟量输出通道。DSP将代表舵面位置的数字量通过并行数据接口送至DAC7725N,DAC7725N将其转换成相应的模拟电平信号后送至舵控电路,从而完成本次舵面刷新操作。结构图如图1所示。

2 DAC转换精密基准电路设计

基准电路具有稳定性好,对系统的操作环境(如电源电压、工作温度、输出负载)变化不敏感的特点,可以为其它电路模块提供较为精确的参考点,因此它是模拟集成电路和数模混合电路中不可缺少的基本单元电路。DAC7725N精密基准电路如图2所示。

3 DSP与DAC7725N接口电路的设计

比较DSP的XINTF接口与DAC7725N的并行端口可知,两接口具有良好的兼容性,只需少量接口逻辑电路的配合即可建立起DSP与DAC7725N之间的通信连接。为提高逻辑电路设计的灵活性和可靠性,所有的逻辑电路全部使用1片CPLD实现。DSP与DAC7725N接口电路如图3所示。

图3给出了1片DAC7725N与DSP实现通信连接的电路原理图。本系统共使用2片DAC7725N,另一片使用相同的接口电路,这里不再重复给出。

3.1 DAC7725N片选译码逻辑设计

1#DAC7725N芯片提供第1#~4#模拟量输出通道,2#DAC7725N芯片提供第5#~8#模拟量输出通道,DSP要选通某一通道,首先要通过CPLD的片选译码逻辑选通提供该通道的DAC7725N芯片。本系统中采用部分译码的方式提供每个DAC7725N芯片的片选信号。逻辑电路如图4所示。

地址分配情况如表1所示。

3.2 DAC7725N写使能信号R/W的逻辑设计

DAC7725N使用R/W信号使能本次写操作。写操作是D/A转换芯片的基本操作,DSP将待转换的数字量写入DAC7725N,在DAC7725N的模拟量输出端即可得到相应幅值的模拟信号。读操作是DAC7725N的特色之一,DAC7725N支持数字量回读功能,使得DSP能够方便地获取当前正在参与转换的数字量的值。下面以D/A转换芯片的写操作为例,详细分析芯片DAC7725N写操作时序设计,由于读操作与写操作时序设计类似,这里不再累述。

DAC7725N执行写操作时对R/W信号和CS信号的时序关系有一定的要求,如图5所示。

只要DSP在对DAC7725N执行写操作时,以CPLD为核心的接口电路能够提供符合上述标准的逻辑时序,就能确保DSP对DAC7725N的写操作正确执行。

XINTF在执行写操作时XR/W信号时序图示如下:

通过对DAC7725N与XINTF的接口时序作定性对比可知,令

保持一致,总体上可满足DAC7725N的接口时序要求。

4 D/A转换驱动程序设计

4.1 转换通道刷新的程序设计

刷新操作是指该D/A转换通道能够及时锁存来自CPU的数字量输入,并输出相应幅值的模拟信号。刷新操作是D/A转换通道的基本操作。对于本系统来讲,DSP想要刷新某一D/A转换通道的模拟量输出,只需向相应的端口地址写入数据即可。以DAOUT1通道为例,给出示例代码如下:

unsigned int*DAOUT1=(unsigned int*)(0x004000;

*DAOUT1=daout_w[0];

上例中,首先为DAOUT1通道定义一个指针变量,指向该通道所分配的地址,也就是0x004000;数组元素daout_w[0]存放该通道参与转换的数字量。DSP执行上述写指令时,XINTF的地址总线会送出0x004000,将DAOUT1通道选通,工作于直通模式;控制信号XR/W会送出低有效脉冲,使能本次写操作;数据总线会送出daout_w[0]里存放的数字量。至此,DAOUT1通道的刷新操作全部完成。

4.2 转换通道数据回读的程序设计

数据回读功能是DAC7725N芯片的特色之一。DAC7725N允许在转换过程中读出当前正参与转换的数字量,DSP据此可以获取所有D/A转换通道输出的模拟信号的幅值,而无需使用额外的传感器和A/D转换电路。与数据给定(刷新)操作类似,数据回读操作只需从相应的端口地址读出数据即可。以DAOUT1通道为例,给出示例代码如下:

daout_r[0]=*DAOUT1;

上例中,存入数组元素daout_r[0]中的数据,即是该通道当前正在参与转换的数字量。DSP执行上述写指令时,XINTF的地址总线会送出0x004000,将DAOUT1通道选通;控制信号XR/W保持高电平,使能本次读操作;DAC7725N将该通道当前正参与转换的数字量送至数据总线,供XINTF读取。至此,DAOUT1通道的数据回读操作全部完成。

5 系统性能验证

D/A转换通道在飞行控制系统中负责给出代表舵面位置的模拟信号。刷新速率不低于50 Hz,精度不低于200 mV。图7是DAC扩展模块实物图。

D/A转换通道的验证方案设计如下:

每一路D/A转换通道均要求输出正弦波信号,使用定时器定时刷新的方式,将定时器的定时周期设为1 ms,刷新频率可达1 000 Hz;将-10~+10 V的输出幅值离散为1 000个点,这样,理论上的转换精度可达20 mV;用示波器实时监测每一通道的输出信号,看输出正弦波的频率是否稳定为1 000 Hz,波形是否有明显的异常抖动,每隔一段时间读取正弦波的振幅值,从而验证在1 000 Hz的刷新频率下,转换精度是否满足要求。参考以上论述,先以通道E—D/A1参与测试,结果显示,E—D/A1通道能够输出预期的正弦波信号,证明此D/A转换通道能正常工作。剩余7通道也按相同方式验证,在确知所有的D/A通道已调通之后,对各通道的转换精度进行了静态测试,测试方案如下。

在程序中向每路D/A转换通道写入相同且固定的数字量,并以20 ms为周期进行刷新。使用高精度直流电压表对各通道输出的模拟信号进行测量。由于数字量固定且已知,可由相关公式计算得到理论上输出模拟量幅值,将其作为基准参考与实际测得的模拟信号幅值进行比较,可较为准确地得到各路D/A转换通道的转换精度。测试结果表明,所有D/A转换通道精度能够达到5.8 mV,可满足无人机飞行控制系统的应用需求。

6 结论

文中以DSP作为中央处理单元(CPU),使用两片DAC7725N扩展得到8路模拟量输出通道。DSP使用XINTF接口实现对DAC7725N的驱动,驱动程序简单,接口逻辑可靠。使用CPLD实现DSP与TL16C754之间的接口逻辑,简化了电路设计,进一步提高了系统的可靠性。实验证明,所有D/A转换通道在1 000 Hz的刷新频率下,精度能够达到5.8 mV,完全能够满足飞控系统实际应用的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

近日,国内新一代激光陀螺驱动系列功能芯片问世,由湖南二零八先进科技有限公司(下简称“二零八公司”)技术团队研发。相比行业内普遍应用的上一代激光陀螺驱动控制电路,激光陀螺驱动专用芯片降低了电路设计难度,大幅减小体积重量,实...

关键字: 激光陀螺仪电路 芯片 电路设计

R是施密特触发器输入端的一个10KΩ下拉电阻,时间常数为10×10-6×10×103=100ms。

关键字: 复位 电路设计 施密特触发器

学好电子技术基础知识,如电路基础、模拟电路、数字电路和微机原理。这几门课程都是弱电类专业的必修课程,学会这些后能保证你看懂单片机电路、知道电路的设计思路和工作原理;

关键字: 单片机 编程 电路设计

Buck-Boost电路工作原理及其应用你有没有去了解过呢?随着科技的不断发展,电力电子技术在各个领域得到了广泛的应用。其中,Buck-Boost电路作为一种重要的电力电子变换器,具有很高的实用价值。本文将对Buck-B...

关键字: buck-boost 电路设计

本文是开发测量核心体温( CBT )传感器产品的刚柔结合电路板的通用设计指南,可应用于多种高精度(±0.1°C)温度检测应用。

关键字: 温度传感器 电路设计

自9月22日开始,2023年中国大学生工程实践与创新能力大赛选拔赛在全国各省市陆续展开,10月29日北京、海南、新疆等区域选拔赛成功举办,也为今年的选拔赛画上了圆满的句号。在此,向那些成功晋级国赛的选手们致以热烈祝贺,同...

关键字: PCB 电路设计

自从智能手机、平板电脑、笔记本电脑的兴起,内置的锂电池技术没有革命性突破,续航问题一直伴随着这些数码设备,移动电源的出现给我们出行过程中学习、工作、娱乐提供了更多额外的电量,可谓是功不可没。

关键字: 移动电源 电路设计 智能手机

低纹波直流稳压电源设计基于晶体管显示在这里。这种晶体管稳压器适用于需要高输出电流的应用。常规一系列综合监管机构,像7805只能提供高达1A。其他系列通晶体管被添加到7805稳压电路,为改善他们目前的能力。

关键字: 直流 稳压电源 电路设计
关闭
关闭