当前位置:首页 > 工业控制 > 电子设计自动化

光纤陀螺是激光陀螺的一种,是惯性技术和光电子技术紧密结合的产物。它利用Sagnac干涉效应,用光纤构成环形光路,并检测出随光纤环的转动而产生的两路超辐射光束之间的相位差,由此计算出光纤环旋转的角速度。光纤陀螺仪主要由表头和调制解调电路两个部分组成。伺服于表头的调制解调电路根据输入的电信号,经过相应的变换后形成反馈信号送至表头的相位调制器中。在实际的应用过程中,相应的调制解调电路应该根据温度、振动等情况做出相应的改变,才能最大限度地保证陀螺的精度要求。本文设计了一种基于FPGA的测试系统,模拟光纤陀螺仪的表头,并检测调制解调电路的性能。

模拟表头的基本原理及结构

表头的主要功能是将Sagnac效应产生的光程差所引起的相位变化通过回路耦合器转换为光功率的变化,再通过探测器探测后以电信号的形式输出至调制解调电路中。数字闭环光纤陀螺仪系统结构见图1。从调制解调电路中采样来的原始参数值,经过模拟表头内数字信号处理,可将输入调制解调电路的实际表头信号还原出来。得到初始还原值之后,通过在模拟表头中进行修改、加载不同类型的参数值,从而检测调制解调电路中相应的性能指标。

本文所设计的模拟表头系统遵循了一般数字闭环光纤陀螺系统的基本原理,在系统结构上发生了变化。调制解调电路在本系统中处于被动地位,而表头作为系统的主体。同时,用一个自主设计的电路系统代替了光纤陀螺仪的表头部分。模拟表头及其测试系统的结构如图2所示。

图中,PC上位机的工作十分重要,它不仅控制调制解调电路和模拟表头系统的协同工作,而且要将所采集来的数据进行分析整理,并完成关键的软件编写和植人工作。

模拟表头系统的硬件设计

根据理论分析,本文设计出基于FPGA的模拟表头硬件系统,如图3所示。

在这个闭环系统中,需要采集的主要信号是调制解调电路中的相位反馈信号。根据反馈信号的特点,选用运算量不大但处理速度快的FPGA作为信号处理的主要器件。在本方案中,考虑到成本和实际运算量,选取XC3S100E FPGA芯片。

本系统采用±5V稳压直流电源供电。经过计算,本系统的功耗在5W以下,故直流电源的输出电流需达到1A。根据FPGA及其外围电路的供电要求,需要设置三个DC/DC模块:分别是5V转3.3V,5V转2.5V和3.3V转1.2V。分别选择了MAX651、ADP3333和LTC3406用于电压转换。另外,3.3V电源还用作驱动ADC、数码管、运算放大器等器件。

XC3S100E芯片具有较好的性价比,它具有2160个逻辑单元,100000个系统门资源,最大的I/O口数目是108。对本系统来说,完全能满足16位输入/输出、数码管指示灯等显示模块、与上位机通讯以及其他控制信号的接口需要。系统中另外配置了一块和FPGA相匹配的EPROM-XCF01S,用来提供逻辑芯片在开机后目标程序的加载。

A/D和D/A转换分别采用AD7671和AD768两款芯片。AD7671具有最高可达1MSPS的采样速率,逐次逼近型高速高精度,并行传输的模数转换器,并能达到16位精度,而且无失码,最大积分非线性误差(INL)仅为±2.5LSB,能够很好地满足本系统要求。AD768是一款具有16位精度,最高可达40MSPS采样速率的高速DAC。它的响应时间非常短,转换速度快并与高速的ADC有很强的适配能力。

在提取初始参数时,考虑到陀螺信号比较弱,在A/D转换之前的设计采用了弱信号检测方法,对信号进行滤波、整形并放大,在最大限度保证无失真的前提下将原始信号提取出来,并转换为ADC可以分辨的信号输出。

模拟表头系统的软件设计

根据闭环光纤陀螺仪表头的基本原理,实际表头输出的信号为周期恒定的梳状波。波形中奇偶周期的电压差值表示表头光纤环中两束光的光程差所对应的电信号量。调制解调电路产生的用于反馈的阶梯波作为实际表头的输入。因此,模拟表头软件要解决的问题有两个:
一个是产生一个象征光程差(根据光程差就能计算出角速度ω)的随机数X,一个是利用调制解调电路送来的阶梯波进行计算,提取阶梯值S及其周期。

核心算法的软件设计流程如图4所示。

在流程图中,模块A用于判断阶梯值的正负。根据实际解调电路特性,反馈信号是通过对解调电路产生的阶梯值累加,再经方波调制得到的,累加过程中采用了高低复位操作。因此,在对阶梯波采样值作进一步处理前,有必要判断阶梯值正负。这里通过设置计数器,对同周期相邻采样值进行多次作差比较来判断其正负,避免了高低复位操作引起的前后采样值突变对判断结果的影响。

模块B是高低复位判断和补偿模块。该模块通过比较同周期前后采样值的大小来实现复位点判断,然后对经过复位的采样值进行相应的补偿操作。

在xilinx ISE8.2的平台上,对Verilog HDL编写的模拟表头作了功能仿真。采用常用的ModelSimSE 6.2对Testbench模块进行仿真,用以检测程序设计中计算和逻辑的正确性。仿真模块设置主时钟MCLK周期为10ns,高低电平持续时间相同。每隔50个时钟周期进行一次采样,累加16个采样值求一次阶梯。仿真时间设置为35000ns,RSTB为主复位信号,ADBUSY与ADCNVST为ADC控制信号,CLOCK为DAC控制信号。

本方案对随机数X和输入INDATA在几种极限情况下的仿真结果进行了验证,用以检测表头程序设计的正确性。

结语

根据以上的软硬件设计,可设计出能够模拟光纤陀螺仪表头行为的模拟表头系统。测试时,将实际的光纤陀螺仪表头和调制解调电路与设计电路系统对接,就能得到所期望的波形和数据。将模拟表头的随机输入数(代表角速度ω)与被检测的调制解调电路输出作对比,可有效检验出被测调制解调电路的性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着科技的不断进步,6轴传感器在现代机器人技术、航空航天、汽车工程等领域的应用越来越广泛。它能够提供三维空间中的线性加速度和角速度信息,为各种精密控制和导航提供关键数据。本文将详细探讨6轴传感器的工作原理、组成部分、应用...

关键字: 6轴传感器 加速度计 陀螺仪

在这个AI计算越来越受到关注的时代,德国一个科学家团队开发了一种可能改变游戏规则的解决方案。

关键字: 无芯片计算机 光纤 计算机 光波

随着现代科技的不断进步,传感器技术已成为众多领域不可或缺的关键要素。其中,六轴传感器以其独特的功能和广泛的应用场景,逐渐成为了传感器领域中的佼佼者。本文将对六轴传感器的优势进行深入探讨,并分析其在不同领域的应用前景。

关键字: 陀螺仪 六轴传感器 加速度计

随着这两个必要的条件的相续出现,光纤通信开始了它的飞速发展,拉开了光纤通信这个通信行业中最为重要的传输手段之一的技术的序幕。

关键字: 光纤通信 光纤 激光器

光通信是以光波为信息载体,以光纤为传输媒介的通信方式。相比传统的电通信,光通信具有传输带宽大、传输损耗低、成本低、保密性好等优点。光通信系统的基本组成包括光源、光发送机、光纤、光接收机和光检测器等设备。

关键字: 光通信 光纤

由南卡罗来纳州州长亨利·麦克马斯特(Henry McMaster)阁下揭幕  投资5600万美元  承诺推动美国乡村宽带建设并...

关键字: 光纤 电缆 ST BSP

光纤测温系统分为三种,一种是荧光光纤测温、一种是分布式光纤测温、还有一种是光纤光栅测温。

关键字: 光纤 高温 测量仪 荧光光纤测温

陀螺仪又叫角速度传感器,是不同于加速度计(G-sensor)的,他的测量物理量是偏转、倾斜时的转动角速度。螺旋仪是一种用来传感与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由一个位于轴心且可旋转的转子构成...

关键字: 手机应用 陀螺仪

MEMS陀螺仪即硅微机电陀螺仪,绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。MEMS (Micro-Electro-Mechanical Systems)是指集机械元素、微型传感器、微型执行器...

关键字: 陀螺仪 角速率测试

瓦尔登堡(德国),2023 年 5 月 24 日 — 伍尔特电子进一步扩充其 MEMS 紧凑型传感器产品系列,配备 3 轴加速度计并集成陀螺仪。WSEN-ISDS 有多种测量范围和数据速率可以选择,因此用途非常广泛。这款...

关键字: 运动传感器 加速计 陀螺仪
关闭
关闭