当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 应用Altera公司的StratixTMII系列FPGA EP2S30F484I5芯片和基于Camera Link接口的数码相机CV-A10CL,设计实现了对高分辨率黑白数字图像进行拆分压缩、解压缩及PCI总线接入拼接恢复的系统。系统分为数码相片压缩单元、数码相片解压缩单元和基于MFC的图像拼接恢复程序。数码相片压缩单元完成对来自相机Camera Link接口数据的接收、缓存、图像数据压缩并发送,数码相片解压缩单元完成对接收到的已压缩的图像数据进解压缩,并将解压缩后的图像数据通过PCI总线传输至PC上显示。
关键词: FPGA;Camera Link;ADV202;PCI总线;图像的拆分压缩;解压缩拼接

Camera Link[1]是工业高速串口数据和连接协议,它由世界数码相机供应商和图像采集公司在2000年10月联合推出,旨在为数码相机和PC机间的高速、高精度数字传输提供一种标准连接。本设计就是基于Altera公司的StratixTM II系列芯片中的FPGA EP2S30F484I5芯片和数码相机CV-A10CL[2]设计的一个可以实时显示的图像传输系统。由于ADV202所能压缩的每幅图像最大样本数为1.048 M,即1 024×1 024分辨率的图像。对于本设计中的4 008×5 344分辨率的图像进行传输必须要对图像进行分割压缩,然后在接收端合并恢复出完整的图像。在本设计中,FPGA的作用是对通信的所有过程进行控制和对数据进行处理。
1 高分辨率图像拆分与合并传输原理
由于ADV202[3]所能压缩的每幅图像最大样本数为1.048 M,即1 024×1 024分辨率的图像。所以4 008×5 344分辨率的图像进行传输必须要对图像进行分割压缩,然后在接收端合并恢复出完整的图像。
按照ADV202的技术手册,在采用低压缩比对图像进行压缩时,在解压端可以不考虑图像拆分时的边界效应,直接对图像进行合并。但是在本项目中,必须支持8~80倍的图像压缩。而在80倍图像压缩时,还是会明显感觉出图像间的拼接效果,所以必须要考虑图像的边界效应。
针对以上分析,将4 008×5 344分辨率的图像水平方向拆分成4幅图,垂直方向拆分成6幅图,总共拆成24幅1 024×1 024分辨率的图像进行传输。拆分方法如图1所示。

为了解决图像间水平方向的边界效应,水平方向上每幅图都需要和相邻的图像有一定的图像数据冗余。在接收端,通过冗余的图像数据来覆盖掉边界图像。例如Pic1和Pic2为水平方向相邻的两幅图像,在它们之间引入水平方向24个像素的图像冗余。在接收端,将Pic1每行的最后12个像素点用Pic2的对应像素点替换,这样就可以消除图像间的水平边界效应。每幅图像水平方向的起始像素点和结束像素点如图1(a)所示。
同理,也可以在垂直方向采用相同的方法,每幅图像垂直方向的起始像素点和结束像素点如图1(b)所示。
采用以上方法就可以将4 008×5 344分辨率的图像拆分成如图1(c)所示的24幅具有冗余度的图像。

2 系统整体设计方案
图像传输系统由数码相片压缩单元和数码相片解压缩单元组成[4-5]。数码相片压缩单元通过Camera Link接口连接数码相机接收数码相片原始数据,并对数码相片原始数据进行压缩,然后将要测数据与压缩数据合成为数码相片数据流,最后将数码相片数据流和码同步时钟通过RS422同步接口输出到下一个设备;数码相片解压单元接收到数码相片数据流后,通过RS422同步接口传送给解压卡,解压卡进行解压后,通过PCI总线把数据传输到PC机上,最后进行数据显示、存储和网络发送等。压缩与解压缩单元组成框图如图2所示。

3 系统工作原理
3.1 图像压缩单元工作原理
即使同时使用两片图像压缩芯片ADV202,也仅仅能够支持一路高清电视的分辨率的图像,与4 008×5 344仍然存在较大差距。因此,考虑采用将一幅图片进行拆分,分为多帧压缩传送,保证整幅照片的数据传送。工作逻辑框图如图3所示。

从Camera Link接收的数据在SDRAM[6-7]中缓存,当数据存满一张完整照片时,采用连续发送的方式将数据送入ADV202压缩,ADV202返回的数据与遥测数据混合成帧,然后发送到AHA4501[8]芯片完成信道编码编码的数据,在FPGA控制下,采用同步方式从RS422数据口输出。
3.2 图像解压缩单元工作原理
在接收端,采用如图4的结构。接收到的信道数据,首先在FPGA内部进行信道解码恢复成图像数据和遥测数据帧,将遥测数据从RS422接口输出,完成遥测数据的处理。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

hmi是Human Machine Interface 的缩写,"人机接口",也叫人机界面。人机界面(又称用户界面或使用者界面)是系统和用户之间进行交互和信息交换的媒介, 它实现信息的内部形式与人类可以接受形式之间的转换...

关键字: HMI 人机界面 系统

随着科技的飞速发展,电子产品在我们日常生活中扮演着越来越重要的角色。而在这些电子产品中,接口作为连接设备与外部设备的桥梁,其重要性不言而喻。其中,Type-C接口作为一种新型的接口标准,因其独特的优势,逐渐成为了众多电子...

关键字: 电子产品 Type-C 接口

在复位电路中,电容的作用是给系统提供恒定的电源电压,从而保证开机时系统能够正确地执行初始化和自检过程。因此,选择合适大小的电容对于系统的稳定性和性能至关重要。

关键字: 复位电路 电容 系统

通过大量的数据,训练出一个能处理此类数据的模型,使得这个模型可以根据已知的数据,准确率很高的判断出未知的数据,从而使得人类能够采取正确的方法去处理某些事情。

关键字: 机器学习 模型 图像

在监督学习中,系统会被给定一组已知输入和输出,需要学习到一种函数,使得该函数能够根据给定的输入预测出正确的输出。代表算法有线性回归、逻辑回归、决策树、深度神经网络等。

关键字: 机器学习 数据源 图像

在这一步中,需要从不同的数据源收集数据,包括结构化数据(例如数据库中的表格数据)和非结构化数据(例如文本、图像和音频)。

关键字: 机器学习 数据源 图像

工业自动化系统设计是一项涉及多个领域和技术的综合性任务。它旨在通过自动化设备和系统的集成,提高生产效率、降低能耗、确保产品质量和增强企业竞争力。本文将详细探讨工业自动化系统设计的原则、方法和实践,以期为相关从业人员提供有...

关键字: 工业自动化 设备 系统

作为一种解决方案和应用,其核心内容是:让人们无论任何时间、任何地点,都可以通过任何设备、任何网络,获得数据、图像和声音的自由通信。

关键字: 统一通信 图像 思科

大多数紧急事件的发生具有时间不确定性从而造成应急通信也具有时间不确定性,使人们无法预知什么时候需要应急通信。

关键字: 应急通信 语音 图像

随着电动汽车的普及,充电桩作为电动汽车的重要基础设施,越来越受到人们的关注。然而,对于许多电动汽车用户来说,直流充电桩和交流充电桩的接口和区别仍然是一个令人困惑的问题。本文将从接口和区别两个方面,详细探讨直流充电桩和交流...

关键字: 电动汽车 接口 充电桩
关闭
关闭