当前位置:首页 > 单片机 > 单片机
[导读]在雷达抗干扰处理以及空时二维处理过程中数据排序将必不可免,在传统的DSP、CPU等常规软件排序已经不能够满足雷达系统实时性要求,使用 FPGA排序的趋势将势不可当。FPGA由于具有较高的并行处理能力,目前已成为雷达阵列信号处理中的主流处理器件。

摘要:基于FPGA硬件技术,以资源和时间相结合的思路,提出了一种串并结合的比较排序算法。该算法通过对数据的分时并行比较,计算出每个数据在排序中的位置实现数据排序。该算法可在较短的时间内实现数字序列的排序,通过实验证明,资源消耗少,实时性号,通用性强。

关键词:排序;FPGA;并行;串行

在雷达抗干扰处理以及空时二维处理过程中数据排序将必不可免,在传统的DSP、CPU等常规软件排序已经不能够满足雷达系统实时性要求,使用 FPGA排序的趋势将势不可当。FPGA由于具有较高的并行处理能力,目前已成为雷达阵列信号处理中的主流处理器件。计算耗费的时间和消耗的硬件资源成为 处理的主要矛盾,如何解决这个矛盾,本人将提出解决方案。

1 算法描述与分析

排序就是将数据元素的一个任意序列,重新排列成一个按关键字有序的序列。各种传统串行排序算法如冒泡,大多都是以两两之间顺序比较为基础,不能满足 实时性要求。如果将传统的串行排序在FPGA中进行分段串行排序再排序,可以减少排序时间,但却大大增加设计难度。本文提出基于并行比较思路,通过将逻辑 比较结果求和,用此和值确定排序结果的位置,从而达到实现排序结果的目的。

 

假设待排序数据元素个数为N,全并行比较就是在同一时刻将N个数两两比较,再在下一时刻进行累加求和以确定排序结果。这样需要耗费N*N个比较器,如果元素个数较多,将耗费大量逻辑资源。本算法采用N个比较器,用N倍时间实现比较。算法如上图所示。

不同的比较器将有不同的比较结果输出,下表列出了4种比较器输出结果形式。

2 工程实现

排序算法在FPGA内进行,整个实现过程如下图。使用verilog语言设计,做到模块化、参数化,以适应不同数量的排序以及各自逻辑资源的控制,主要有以下几步:

1)将流水线上的待排序的Ⅳ个数据存储到RAM中,同时对相等值数量的RAM写零;

2)读取N个赋给N个变量准备比较;

3)读取数据和N个变量同时比较;

4)将比较结果累加求和;

5)将和值作为地址读取此数据的个数,将此个数和累加和相加写到排序结果RAM中,同时将个数加1写入相等值数量的RAM中。

相等值数量RAM主要处理待排序数据流有过个相同数值大小的数据排序的情况。

读取N个赋给N个变量准备比较需要N个时钟周期,比较需要N个时钟周期,多级累加需要3*N个时钟周期(N≤512),相同数值排序需要3*N个时钟周期,合计需要8*N个时钟周期。

3 仿真与验证

本算法Verilog代码以及IP核模块的新建基于Xilinxvp690,功能级仿真在Modsim中完成。图3是待排序数据流截图,待排序数据 是从20到319的300个递增数据,图4是图3输入数据的从小到大的排序结果,其中m_data_h是是排序后原先数据的序号,m_data_l是排序 后从小到大的结果;为了验证相同数值的排序情况,将上述待排序数据的第2、39个数改成和第1个数相同,即20,再排序,其结果如图5所示,圆圈标出了相 同数据及相同数据的排序结果。

4 算法在工程应用中的性能分析

通过实际建立工程,综合、仿真分析分别得出128点、256点以及512点排序,分别使用全并行算法、串行(冒泡)算法和本文串并结合的算法得到的 逻辑资源使用情况以及运算时钟周期。从表中可以看出,全并行算法速度最快,但数据点数翻倍时消耗的资源消耗平方级翻倍,256点排序已经超出了芯片的范 围;串行冒泡算法消耗的资源较少,但数据点数翻倍时消耗的时间却是平方级翻倍;只有本文提出的算法消耗的资源和时钟周期都能接收,具有可行性意义。

采用240 MHz时钟,512点排序,只需要8μs。

5 结束语

排序在雷达信号处理过程中只是其中的一个功能,这要求我们逻辑资源不能消耗太多,而雷达的实时性要求又要求我们必须快速的完成排序。从上述论述可 知,单纯的串行和并行排序都不能满足要求,只有本文这种基于FPGA技术的串并行结合处理排序算法才能够满足实际工程要求,达到了实时排序的效果。该算法 具有通用性,可以应用到各种数据快速排序运算领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

Pmod接口可以说是数字电路板的连接革命。随着科技的飞速发展,数字电路板间的通信与连接技术也在不断创新和进步。Pmod接口,作为一种新兴的数字接口标准,正逐渐成为数字电路板间通信的桥梁,为电子设备的连接和通信带来了革命性...

关键字: pmod接口 FPGA 数字电路板

近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU...

关键字: FPGA AI 图形处理器

当我们提到成本优化型FPGA,往往与简化逻辑资源、有限I/O和较低制造工艺联系在一起。诚然,在成本受限的系统设计中,对于价格、功耗和尺寸的要求更为敏感;但随着一系列创新应用的发展、随着边缘AI的深化,成本优化型FPGA也...

关键字: AMD FPGA Spartan 边缘计算

全球领先的高性能现场可编程门阵列(FPGA)和嵌入式FPGA(eFPGA)半导体知识产权(IP)提供商Achronix Semiconductor公司宣布,该公司参加了由私募股权和风险投资公司Baird Capital举...

关键字: FPGA 智能汽车 eFPGA

全新 FPGA 能为嵌入式视觉、医疗、工业互联、机器人与视频应用提供高数量 I/O、功率效率以及卓越的安全功能

关键字: FPGA 嵌入式视觉 机器人

Altera致力于为客户提供端到端的FPGA、易于使用的AI、软件和弹性供应链。

关键字: FPGA AI

在半导体领域,大部分对于AI的关注都集中在GPU或专用AI加速器芯片(如NPU和TPU)上。但事实证明,有相当多的组件可以直接影响甚至运行AI工作负载。FPGA就是其中之一。

关键字: FPGA AI 半导体

半导体产品老化是一个自然现象,在电子应用中,基于环境、自然等因素,半导体在经过一段时间连续工作之后,其功能会逐渐丧失,这被称为功能失效。半导体功能失效主要包括:腐蚀、载流子注入、电迁移等。其中,电迁移引发的失效机理最为突...

关键字: 半导体 电迁移 FPGA
关闭
关闭