当前位置:首页 > 单片机 > 单片机
[导读] 在嵌入式设计中,许多应用设计都需要使用EEPROM 存储非易失性数据,由于成本原因,某些单片机在芯片内部并没有集成EEPROM。MSP430G 系列处理器是TI 推出的低成本16 位处理器,在MSP430G 系列单片机中

在嵌入式设计中,许多应用设计都需要使用EEPROM 存储非易失性数据,由于成本原因,某些单片机在芯片内部并没有集成EEPROM。MSP430G 系列处理器是TI 推出的低成本16 位处理器,在MSP430G 系列单片机中并不具备EEPROM。为了存储非易失性数据,MSP430G 系列处理器在芯片内部划分出了256 字节的Flash 空间作为信息Flash,可用于存储非易失性数据,但是由于Flash 与EEPROM 在擦写寿命上存在一定差距,所以在实际应用中,这种应用方式并不能够满足所有客户的需求。本应用笔记介绍了使用代码区域Flash 来模拟EEPROM,通过一定的软件处理算法,可以大大增加数据存储周期的一种方法。本文给出了实现上述功能的软件流程。


1. 嵌入式Flash 存储介质与EEPROM 的主要特性对比

电可擦除和编程只读存储器(EEPROM)是在绝大多数嵌入式应用中都会使用到的用于保存非易失性数据的关键器件,用于在程序运行期间保存数据。Flash 闪存(Flash Memory,简称为"Flash")是一种非易失性( Non-Volatile )存储器,广泛应用于各种嵌入式处理器中,用于存储程序代码。

由于硬件成本原因,在许多嵌入式处理器中并没有集成EEPROM 模块,通常我们可以采用在片内Flash 存储器中保存非易失性数据的应用方式来达到使用要求。对一些普通的应用场合,这种使用方式可以满足要求。

表一 EEPROM与Flash 对比分析

1.1 写访问时间

由于EEPROM 和Flash 的工作特性不同,所以写访问时间也不相同。Flash 具有更短的写访问时间,所以更适用于对存储速度有要求的场合。

1.2 写方法

外置EEPROM和采用Flash 模拟EEPROM的最大不同之处在于写的方法。

EEPROM:对EEPROM 的写操作不需要额外的操作,只需要提供电源供给;但是一旦启动写操作流程后,写操作不能够被打断。所以需要外接电容器等措施来保证在芯片掉电时能够维持供电,保证完成数据操作。

Flash 模拟EEPROM:当芯片上电后,写操作可以被电源掉电和芯片复位打断。和EEPROM 相比,需要应用设计者增加相关的处理来应对可能存在的异常。

1.3 擦写时间

EEPROM和采用Flash 模拟EEPROM在擦除时间上存在很大的差异。

与Flash 不同,EEPROM 在进行写操作之前不要擦除操作。由于Flash 需要几个毫秒时间进行擦除操作,所以如果在进行擦除操作的过程中出现电源掉电的情况,需要软件做相关的保护处理。为了设计一个健壮的Flash 存储器的管理软件,需要深入的了解和掌握Flash 存储器的擦除过程特性。

2. 增加Flash 模拟EEPROM 擦写寿命的方法

可以根据用户的需求采用不同的方法实现Flash 存储器模拟EEPROM。

2.1 虚拟地址加数据方案

通常需要两个页以上的Flash 空间来模拟EEPROM。上电后,初始化代码先查找出有效页,同时将另外一个页初始化为擦除状况,以提供字节写的能力,并用作备份和随时准备执行写入操作。需要存储EEPROM 的变量数据首先写入有效页,当有效页写满后,需将所有数据的最后状态保存到备份页,并切换到备份页进行操作。每一页的第一个字节通常用来指示该页的状态。

每个页存在3 种可能状态:

擦除态:该页是空的。

已写满数据状态:该页已经写满数据,准备切换到下一个页进行操作。

有效页状态:该页包含着有效数据并且标示状态尚未改变,所有的有效数据全部拷贝到了已经擦除的页。

下图以采用两个页模拟EEPROM的方式为例,描述了页状态字的在页0 和页1 之间的切换过程。

采用这种方式,用户不知道数据刷新的频率。

下面的图例以采用两个页模拟EEPROM 的应用方式为例进行描述。为了方便获取模拟EEPROM数据和更新数据内容,每个存储变量元素都在Flash 里定义了一个操作单元,在该操作单元中对每个存

储变量元素都分配一个虚拟操作地址,即一个EEPROM 操作单元包含一个虚拟地址单元和一个数据单元。当需要修改数据单元内容时,新的数据内容和之前分配的虚拟地址一同写入一个新的模拟EEPROM存储器单元中,同时返回最新修改的数据内容。EEPROM存储单元格式描述如图二。

使用虚拟地址加数据的方案总结如下。

? 为每一个目标存储变量分配一个虚拟地址,该虚拟地址需一同存入Flash 中。当读取存储变量内容时,需根据该变量的虚拟地址搜索虚拟EEPROM并返回最后更新的内容。

? 在软件处理上,需要记录下一次写入的物理目的地址;在每一次执行写入操作后,根据EEPROM存储单元大小(操作粒度),将目的操作指针自动累加。

? 当一个页(Page)写满后,需要将所有变量的EEPROM数据拷贝到下一个页,再执行该页的擦除操作。

? 在嵌入式软件处理上需加入合适的校验机制,保证写入数据的正确性并监Flash 是否已经失效。

2.2 划分子页方案

在Flash 中划分出至少2 个页(Page)用作模拟EEPROM,根据应用需求将需写入EEPROM 进行保存的变量数据划分成一个定长的数组(子页),例如16 个字节或者32 字节,将页划分成若干子页后,需对Flash 中的所有子页按照地址顺序进行逐次编号。每个子页的第一个字节通常用来指示该子页的状态,子页状态可以为:空、已写入或者失效。

在芯片上电初始化时,首先查找出第一个尚未写入数据的子页,并进行标识,在进行写EEPROM操作时,应用程序需将待写入EEPROM 子页的所有数据按照事先约定好的顺序整理好,再一次性将所有变量数据写入空的子页中,最后将模拟EEPROM 的操作指针指向下一个空闲的子页,等待下一次写入。待将一个页的数据写满后,再进行一次擦除操作。需要处理好指向子页的指针的跳转。


每个页存在3 种可能状态:

擦除态:该页是空的。

已写满数据状态:该页已经写满数据。

有效页状态:该页包含着有效数据并且该页尚未写满,仍可向子页写入数据。


图三介绍了使用子页的方式实现Flash 模拟EEPROM的数据处理方法。

2.2.1 软件描述

在软件实现上,为了便于软件处理,建议定义一些关键宏定义和结构体,指定Flash 模拟EEPROM 的起始、结束地址、页的大小、子页的大小、每个页的子页数目等参数,同时将需要操作的参数封装起来,便于软件操作和管理,不建议定义许多离散的标志变量。

在软件操作上,Flash 模拟EEPROM模块需要提供几个API 接口给应用程序调用。

? 通过typedef 关键字定义设备类型,typedef unsigned char u8;

? ChkFstPowerOnInfo()用于检测芯片是否为第一次上电并初始化EEPROM 参数到内存,原型如下。

Void ChkFstPowerOnInfo(void);

? FlashWrite()用于写Flash,传递的形参包括指向待写入数据的指针,待写入数据在子页中的起始字节编号,写入数据的长度,原型如下。

void FlashWrite( u8 *array, u8 startNum, u8 length );

? FlashErase()用于擦除Flash,传递的形参是子页的编号,在擦除函数中需要根据子页的编号判断是否需要执行页的擦除操作,原型如下。

void FlashErase(u8 seg_sn);

2.2.2 软件流程图

软件启动后,初始化模拟EEPROM流程图描述如下。

调用API,向模拟EEPROM 写入数据的软件流程如图五所示。在软件处理中,要特别注意目标指针的切换和保证写入数据的正确性,在代码空间允许的情况下,可以增加一些校验算法来保证。

采用划分子页的方案总结如下。

? 每次写入模拟EEPROM的数据长度为定长,即为子页的长度。

? 软件需要定义一个存储变量结构体,用于刷新和同步模拟EEPROM内容。在将数据写入模拟EEPROM之前,程序员需要按照约定的数据格式,在内存中将所有的目标存储变量进行整理。

? 在软件处理上,需要计算当前写入和下一次写入的物理地址;在每一次执行写入操作后,根据子页长度大小,将指向子页的目的操作指针自动累加。

? 待一个页(Page)写满后,需要将最后更新的模拟EEPROM数据拷贝到下一个页,再对写满页执行一次擦除操作。

? 在嵌入式软件处理上需加入合适的校验机制,保证写入数据的正确性并监测用于模拟EEPROM功能的Flash 子页是否已经失效。

2.3 两种方案的对比分析

两种方案的对比分析见表二。

表二 两种方案的对比分析


3. 实际的嵌入式应用

根据

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备
关闭
关闭