首页 > 应用 > 单片机应用
[导读]STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSRR和GPIOx_BRR寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置'1'或置'0'。 GPIOx_BSRR的高16位中每一位对应端口x的每个位,对高16位中的某

STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSRR和GPIOx_BRR寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置'1'或置'0'。

本文引用地址: http://www.21ic.com/app/mcu/201807/779007.htm

GPIOx_BSRR的高16位中每一位对应端口x的每个位,对高16位中的某位置'1'则端口x的对应位被清'0';寄存器中的位置'0',则对它对应的位不起作用。

GPIOx_BSRR的低16位中每一位也对应端口x的每个位,对低16位中的某位置'1'则它对应的端口位被置'1';寄存器中的位置'0',则对它对应的端口不起作用。

简单地说GPIOx_BSRR的高16位称作清除寄存器,而GPIOx_BSRR的低16位称作设置寄存器。另一个寄存器GPIOx_BRR只有低16位有效,与GPIOx_BSRR的高16位具有相同功能。

举个例子说明如何使用这两个寄存器和所体现的优势。例如GPIOE的16个IO都被设置成输出,而每次操作仅需要改变低8位的数据而保持高8位不变,假设新的8位数据在变量Newdata中, 这个要求可以通过操作这两个寄存器实现,STM32的固件库中有两个函数GPIO_SetBits()和GPIO_ResetBits()使用了这两个寄存器操作端口。

上述要求可以这样实现:

GPIO_SetBits(GPIOE, Newdata & 0xff);

GPIO_ResetBits(GPIOE, (~Newdata & 0xff));

也可以直接操作这两个寄存器:

GPIOE->BSRR = Newdata & 0xff;

GPIOE->BRR = ~Newdata & 0xff;

当然还可以一次完成对8位的操作:

GPIOE->BSRR = (Newdata & 0xff) | (~Newdata & 0xff)<<16;

从最后这个操作可以看出使用BSRR寄存器,可以实现8个端口位的同时修改操作。 如果不是用BRR和BSRR寄存器,则上述要求就需要这样实现:

GPIOE->ODR = GPIOE->ODR & 0xff00 | Newdata;

使用BRR和BSRR寄存器可以方便地快速地实现对端口某些特定位的操作,而不影响其它位的状态。 比如希望快速地对GPIOE的位7进行翻转,则可以:

GPIOE->BSRR = 0x80; // 置'1'

GPIOE->BRR = 0x80; // 置'0'

或:

GPIOE->BSRR=1<<7;

GPIOE->BRR=1<<7;

如果使用常规'读-改-写'的方法:

GPIOE->ODR = GPIOE->ODR | 0x80; // 置'1'

GPIOE->ODR = GPIOE->ODR & 0xFF7F; // 置'0'

有人问是否BSRR的高16位是多余的,请看下面这个例子:

假如你想在一个操作中对GPIOE的位7置'1',位6置'0',则使用BSRR非常方便:

GPIOE->BSRR = 0x4080;

如果没有BSRR的高16位,则要分2次操作,结果造成位7和位6的变化不同步!

GPIOE->BSRR = 0x80;

GPIOE->BRR = 0x40


换一批

延伸阅读

[单片机应用] STM32学习笔记之点亮LED灯

STM32学习笔记之点亮LED灯

实验程序:/*******************************led.c*********************************/#include"stm32f4xx.h"//在SYSTEM目录下可......

关键字:STM32 点亮LED灯

[单片机应用] STM32f103的数电采集电路的DMA设计和使用优化程序

STM32f103的数电采集电路的DMA设计和使用优化程序

DMA,全称为:DirectMemoryAccess,即直接存储器访问。DMA传输方式无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场的过程,通过硬件为RAM与I/O设备开辟一条直接传送数据的通路,能使CPU的效率大为提......

关键字:STM32f103 数电采集 DMA

[单片机应用] STM32 软件模拟SPI时序驱动NRF24L01

STM32 软件模拟SPI时序驱动NRF24L01

其实stm32本身的硬件SPI也很好用,但是还是想用软件来模拟一下PSI的时序。SPI是一种高速的,全双工,同步串行的通信总线。SPI通信方式相当于是一个环形结构,由CSN、MISO、MOSI、SCLK四线组成,主要是在SCLK时钟线的......

关键字:STM32 软件模拟 SPI时序 NRF24L01

[半导体] 645亿元!Microchip即将拿下美高森美

645亿元!Microchip即将拿下美高森美

半导体巨头微芯科技宣布,将斥资大约83.5亿美元(约合人民币530亿元)感收购美国最大军用、航天半导体设备商业供应商美高森美(Microsemi)。......

关键字:Microchip 微芯科技 美高森美

我 要 评 论

网友评论

技术子站

更多

项目外包

更多

推荐博客