当前位置:首页 > 单片机 > 单片机
[导读]1.systick介绍 Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会

1.systick介绍

Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会根据“心跳”的节拍来工作,把整个时间段分成很多小小的时间片,每个任务每次只能运行一个“时间片”的时间长度就得退出给别的任务运行,这样可以确保任何一个任务都不会霸占整个系统不放。或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息。

知道systick在系统中的地位后,我们来了解systick的实现。这里只是举例说明systick的使用。它有四个寄存器,笔者把它列出来:

SysTick->CTRL, --控制和状态寄存器

SysTick->LOAD, --重装载寄存器

SysTick->VAL, --当前值寄存器

SysTick->CALIB, --校准值寄存器

下图有他们的分别描述:下图引用地址:http://blog.csdn.net/marike1314/article/details/5673684

2.systick编程

现在我们想通过Systick定时器做一个精确的延迟函数,比如让LED精确延迟1秒钟闪亮一次。

思路:利用systick定时器为递减计数器,设定初值并使能它后,它会每个1系统时钟周期计数器减,计数到0时,SysTick计数器自动重装初值并继续计数,同时触发中断。

那么每次计数器减到0,时间经过了:系统时钟周期*计数器初值。我们使用72M作为系统时钟,那么每次计数器减1所用的时间是1/72M,计数器的初值如果是72000,那么每次计数器减到0,时间经过(1/72M)*72000= 0.001,即1ms。(简单理解:用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000)

首先,我们需要有一个72M的systick系统时钟,那么,使用下面这个时钟OK就!

SystemInit();

这个函数可以让主频运行到72M。可以把它作为systick的时钟源。

接着开始配置systick,实际上配置systick的严格过程如下:

1、调用SysTick_CounterCmd() --失能SysTick计数器

2、调用SysTick_ITConfig() --失能SysTick中断

3、调用SysTick_CLKSourceConfig() --设置SysTick时钟源。

4、调用SysTick_SetReload() --设置SysTick重装载值。

5、调用SysTick_ITConfig() --使能SysTick中断

6、调用SysTick_CounterCmd() --开启SysTick计数器

这里大家一定要注意,必须使得当前寄存器的值VAL等于0!

SysTick->VAL = (0x00);只有当VAL值为0时,计数器自动重载RELOAD。

接下来就可以直接调用Delay();函数进行延迟了。延迟函数的实现中,要注意的是,全局变量TimingDelay必须使用volatile,否则可能会被编译器优化。

下面我们来做一下程序分析:

(1)系统时钟进配置

首先我们对系统时钟进行了配置并且SetSysClock(void)函数使用72M作为系统时钟;

为了方面看清代码我选择截图:

(2)先来看看主函数


intmain(void)

{unsignedchari=0;

unsignedchara[]="abncdee";

SystemInit1();//系统初始化

if(SysTick_Config(72000))//1ms响应一次中断

{

/*Captureerror*/

while(1);

}

/*解析:因为要求是每500ms往中位机发数据一件事,所以放在while语句中,

*送据+延时可以完成相当于中断的效果;

*若是多任务中,其中一个任务需要中断,这把这个任务放在中断函数中调用;

*/

while(1)

{

//测试代码:测试定时器功能,通过延时来测试

GPIO_SetBits(GPIOC,GPIO_Pin_6);//V6

Delay(50);

GPIO_ResetBits(GPIOC,GPIO_Pin_6);//V6

Delay(50);

//功能1代码:每500ms发送数据

/*

UART2_TX485_Puts("123450");

Delay(500);

*/

//功能2代码:上位发特定指令,中位机执行相应操作

//RS485_Test();

}

}

(3)系统滴答定时器的配置--主角登场:

主函数中:SysTick_Config(72000) ;滴答定时器的参数是72000即计数72000

(因为我们使用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000)

在文件Core_cm3.h中

SysTick_Config函数的具体实现如下:


static__INLINEuint32_tSysTick_Config(uint32_tticks)

{

if(ticks>SYSTICK_MAXCOUNT)

return(1);/*Reloadvalueimpossible*/

SysTick->LOAD=(ticks&SYSTICK_MAXCOUNT)-1;//systick重装载值寄存器/*setreloadregister*/

NVIC_SetPriority(SysTick_IRQn,(1<<__NVIC_PRIO_BITS)-1);/*setPriorityforCortex-M0SystemInterrupts*/

SysTick->VAL=(0x00);//systick当前值寄存器

/* Load the SysTick Cou

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32

通用MCU的成功与否,产品本身PPA固然重要,但除此外很大程度上取决于开发生态。生态的繁荣可以让其中的每一位参与者受益,当然也会反哺到MCU产品本身,影响到新的产品定义和走向。

关键字: ST STM32 MCU
关闭
关闭