当前位置:首页 > 单片机 > 单片机
[导读]由于电阻式触摸屏就是一种传感器,它利用压力感应进行控制,将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。这里先引入两个概念,物理坐标和逻辑坐标。物理坐标指触摸屏上点的实际位置,通常以液晶上

由于电阻式触摸屏就是一种传感器,它利用压力感应进行控制,将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。这里先引入两个概念,物理坐标和逻辑坐标。物理坐标指触摸屏上点的实际位置,通常以液晶上点的个数来度量。逻辑坐标指这点被触摸时A/D转换后的坐标值。如图1,我们假定液晶最左下角为坐标轴原点A,在液晶上任取一点B(十字线交叉中心),B在X方向距离A10个点,在Y方向距离A20个点,则这点的物理坐标为(10,20)。如果我们触摸这一点时得到的X向A/D转换值为100,Y向A/D转换值为200,则这点的逻辑坐标为(100,200)。

常用的电阻式触摸屏矫正方法有两点校准法和三点校准法。本文这里介绍的是结合了不同的电阻式触摸屏矫正法的优化算法:五点校正法。其中主要的原理是使用4点矫正法的比例运算以及三点矫正法的基准点运算。五点校正法优势在于可以更加精确的计算出X和Y方向的比例缩放系数,同时提供了中心基准点,对于一些线性电阻系数比较差电阻式触摸屏有很好的校正功能。

校正相关的变量主要有:

x[5],y[5]五点定位的物理坐标

xl[5],yl[5]五点定位的逻辑坐标

KX,KY横纵方向伸缩系数

XLC,YLC中心基点逻辑坐标

XC,YC中心基点物理坐标(数值采用LCD显示屏的物理长宽分辨率的一半)

触摸屏常和点阵式液晶显示(LCD)屏叠加在一起配套使用,构成一个矩形的实际物理平面;而由用户触摸的触摸点集合经过A/D转换器,得到具体显示坐标的集合,这个集合构成了一个逻辑平面。由于存在误差,这两个平面并不重合,校准的作用就是要将逻辑平面映射到物理平面上,即得到触点在液晶屏上的位置坐标。校准算法的中心思想也就是要建立这样一个映射函数现有的校准算法大多是基于线性校准,即首先假定物理平面和逻辑平面之间的误差是线性误差,由旋转和偏移形成。





x[5] , y[5] 五点定位的物理坐标是已知的,其中4点分别设置在LCD的角落,一点设置在LCD正中心,作为基准矫正点。校正关键点和距离布局如图。校正步骤如下:
1.通过先后点击LCD的4个角落的矫正点,获取4个角落的逻辑坐标值。
2.计算 s1’ = xl[2] - xl[1] 、 s3’ = xl[3] - xl[4] 、 s2’ = yl[3] - yl[2] 、 s4’ = yl[4] - yl[1]
计算 s1 = x[2] - x[1] 、 s3 = x[3] - x[4] 、 s2 = y[3] - y[2] 、 s4 = y[4] - y[1],一般取点可以人为的设定s1 = s3 和 s2 = s4,以方便运算。
计算 KX = ( s1’ + s3’ )/2/s1 、KY = ( s2’ + s4’ )/2/s2
3.点击LCD正中心,获取中心点的逻辑坐标,作为矫正的基准点。
4.完成以上步骤则校正完成。下次点击触摸屏的时候获取的逻辑值XL和YL,可根据公式转换成物理值:
X = ( XL - XLC ) / KX + XC
Y = ( YL - YLC ) / KY + YC
换算出来的X , Y即是和LCD像素相对应的物理坐标值,方便对触屏响应程序做区域判别。


以下是校正程序:


/****************************************************************************

*名称:voidLCD_Adjustd(void)

*功能:校正电阻屏系数

*入口参数:null

*出口参数:无

*说明:null

*调用方法:LCD_Adjustd();

****************************************************************************/

u8LCD_Adjustd(void)

{

EXTI_InitTypeDefEXTI_InitStructure;

EXTI_InitStructure.EXTI_Line=EXTI_Line7;

EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt;//为中断请求

EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;//Falling下降沿Rising上升

EXTI_InitStructure.EXTI_LineCmd=DISABLE;

EXTI_Init(&EXTI_InitStructure);

//显示停止刷屏

TIM_Cmd(TIM3,DISABLE);//使能TIMx外设

LCD_Clear(White);

LCD_printString(110,20,"AdjustdBegin",Black);

delay_ms(5000);

//定第一个点

LCD_Draw_Target(20,20,Red);

while(GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7));

while((1-GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7)))

{

x[0]=Read_XY(CMD_RDX);

y[0]=Read_XY(CMD_RDY);

LCD_ShowNum(150,80,x[0],Black);

LCD_ShowNum(150,110,y[0],Black);

delay_ms(200);

LCD_Color_Fill(150,80,200,120,White);

}

//定第二个点

LCD_Draw_Target(300,20,Red);

LCD_Draw_Target(20,20,White);

while(GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7));

while((1-GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7)))

{

x[1]=Read_XY(CMD_RDX);

y[1]=Read_XY(CMD_RDY);

LCD_ShowNum(150,80,x[1],Black);

LCD_ShowNum(150,110,y[1],Black);

delay_ms(200);

LCD_Color_Fill(150,80,200,120,White);

}

if(abs(y[1]-y[0])>60)

{

LCD_Clear(White);

LCD_printString(110,20,"AdjustdFail",Black);

delay_ms(5000);

LCD_Clear(White);

return1;

}

//定第三个点

LCD_Draw_Target(20,220,Red);

LCD_Draw_Target(300,20,White);

while(GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7));

while((1-GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7)))

{

x[2]=Read_XY(CMD_RDX);

y[2]=Read_XY(CMD_RDY);

LCD_ShowNum(150,80,x[2],Black);

LCD_ShowNum(150,110,y[2],Black);

delay_ms(200);

LCD_Color_Fill(150,80,200,120,White);

}

if(abs(x[2]-x[0])>80)

{

LCD_Clear(White);

LCD_printString(110,20,"AdjustdFail",Black);

delay_ms(5000);

LCD_Clear(White);

return1;

}

//定第四个点

LCD_Draw_Target(300,220,Red);

LCD_Draw_Target(20,220,White);

while(GPIO_ReadInputDataBit(GPIOG,GPIO_Pin_7));

while( (1-GPIO_ReadInputD

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

  引言   根据世界卫生组织公布的数据,全世界目前有3 000多万人目盲,其中约有18%是中国人。针对盲人行动不便的情况,本文介绍了一种基于超声相控阵的盲人避障系统。   本文

关键字: stm32f103 超声相控阵 导盲系统

  随着IPTV和多媒体业务的迅速发展,用户对接入带宽的要求不断增加,目前的铜线接入技术很难满足用户对高带宽、双向传输、及安全性方面的要求。在2010年以前,FTTB是中国主流的FTTx建网模式

关键字: stm32f103 张力传感器

引言 随着互联网技术、无线通信技术以及生物传感器技术的进一步发展,可供病人在医院、家庭等环境中使用的可穿戴健康监测预警系统已成为国内外研究人员关注的热点。 本文设计了一种应用互联

关键字: stm32f103 互联网 脉搏监测

致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于意法半导体(ST)STM32F103与德州仪器(TI)CC2564的智能车载双模蓝牙方案WLT2564S。该车载

关键字: stm32f103 蓝牙

2016年8月16日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于意法半导体(ST)STM32F103与德州仪器(TI)CC2564的智能车载双模蓝牙方案W

关键字: cc2564 stm32f103 大联大友尚

(文章来源:显示网) 电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触

关键字: 电容触摸屏 电阻触摸屏 薄膜 电容式触摸屏

(文章来源:触想智能) 对于触控一体机而言,在触摸方式上的选择,是用户场景使用需要考量的重要因素。在工业领域中,像电气室机柜多变频器干扰的使用场景,用户一般选择触控一体机的电容触摸方式。

关键字: 电阻屏 机电 多点触控 电阻触摸屏

(文章来源:触想智能) 基于工业一体机的应用领域不断拓展,现今在各行各业中都可以看到工业一体机的身影。而随着应用的不断普及,特别是在工业领域,用户了解对于工业一体机的一些日常保养,是保证

关键字: 触摸屏 电阻触摸屏 电容触摸屏 元器件

(文章来源:触想智能) 随着越来越多企业加入自动化、数字化、智能化转型的阵列,工业市场对工业一体机的需求也越来越大。而用户在选择工业一体机时,一般都会考虑众多使用因素,其中触摸方式就是首

关键字: 电阻屏 电阻触摸屏 工业领域 电容屏

(文章来源:中国电力电子产业网) 随着触屏手机和平板电脑在近几年里的不断主流化,触屏的概念已渐渐深入人心,但是你知道吗?我们的触屏是有分电阻屏和电容屏的,那你又知道电阻屏和电容屏有什么区

关键字: 电容屏 电阻屏 电流 电阻触摸屏
关闭
关闭