当前位置:首页 > 单片机 > 单片机
[导读]移植环境1,主机环境:VMare下CentOS 5.5 ,1G内存。2,集成开发环境:Elipse IDE3,编译编译环境:arm-linux-gcc v4.4.3,arm-none-linux-gnueabi-gcc v4.5.1。4,开发板:mini2440,2M nor flash,128M nand flash

移植环境

1,主机环境:VMare下CentOS 5.5 ,1G内存。

2,集成开发环境:Elipse IDE

3,编译编译环境:arm-linux-gcc v4.4.3,arm-none-linux-gnueabi-gcc v4.5.1。

4,开发板:mini2440,2M nor flash,128M nand flash。

5,u-boot版本:u-boot-2009.08

6,linux 版本:linux-2.6.32.2

7,参考文章:

嵌入式linux应用开发完全手册,韦东山,编著。

Mini2440 之Linux 移植开发实战指南

【1】硬件原理

Mini2440 板带有一个蜂鸣器,它是由PWM 控制的,下面是它的连接原理图:

可以看出,蜂鸣器所用的GPB0 端口复用的功能为TOUT0,它其实也就是PWM 输出。这在S3C2440 手册中可以看到:

因此,我们需要在驱动程序中,首先把 GPB0 端口设置为PWM 功能输出,再设定相应的Timer 就可以控制PWM 的输出频率了。

【2】驱动程序编写

在 linux-2.6.32.2/drivers/misc目录下,增加一个驱动程序文件mini2440_pwm.c,内容如下:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define DEVICE_NAME "pwm"//设备名
#define PWM_IOCTL_SET_FREQ 1//定义宏变量,用于后面的ioctl 中的switch case
#define PWM_IOCTL_STOP 0//定义信号量 lock

static struct semaphore lock;
/* freq: pclk/50/16/65536 ~ pclk/50/16
* if pclk = 50MHz, freq is 1Hz to 62500Hz
* human ear : 20Hz~ 20000Hz
*/

static void PWM_Set_Freq( unsigned long freq )//设置pwm 的频率,配置各个寄存器
{
unsigned long tcon;
unsigned long tcnt;
unsigned long tcfg1;
unsigned long tcfg0;
struct clk *clk_p;
unsigned long pclk;
//set GPB0 as tout0, pwm output 设置GPB0 为tout0,pwm 输出
s3c2410_gpio_cfgpin(S3C2410_GPB(0), S3C2410_GPB0_TOUT0);
tcon = __raw_readl(S3C2410_TCON);//读取寄存器TCON 到tcon
tcfg1 = __raw_readl(S3C2410_TCFG1);//读取寄存器TCFG1 到tcfg1
tcfg0 = __raw_readl(S3C2410_TCFG0);//读取寄存器TCFG0 到tcfg0
//prescaler = 50
// S3C2410_TCFG_PRESCALER0_MASK定时器0 和1 的预分频值的掩码,TCFG[0~8]
tcfg0 &= ~S3C2410_TCFG_PRESCALER0_MASK;
tcfg0 |= (50 - 1);// 预分频为50
//mux = 1/16
tcfg1 &= ~S3C2410_TCFG1_MUX0_MASK;//S3C2410_TCFG1_MUX0_MASK 定时器0 分割值的掩码TCFG1[0~3]
tcfg1 |= S3C2410_TCFG1_MUX0_DIV16;//定时器0 进行16 分割
__raw_writel(tcfg1, S3C2410_TCFG1);//把tcfg1 的值写到分割寄存器S3C2410_TCFG1 中
__raw_writel(tcfg0, S3C2410_TCFG0);//把tcfg0 的值写到预分频寄存器S3C2410_TCFG0 中
clk_p = clk_get(NULL, "pclk");//得到pclk
pclk = clk_get_rate(clk_p);
tcnt = (pclk/50/16)/freq;//得到定时器的输入时钟,进而设置PWM 的调制频率
__raw_writel(tcnt, S3C2410_TCNTB(0));//PWM 脉宽调制的频率等于定时器的输入时钟
__raw_writel(tcnt/2, S3C2410_TCMPB(0));//占空比是50%
tcon &= ~0x1f;
tcon |= 0xb; //disable deadzone, auto-reload, inv-off, update TCNTB0&TCMPB0, start timer 0
__raw_writel(tcon, S3C2410_TCON);//把tcon 写到计数器控制寄存器S3C2410_TCON 中
tcon &= ~2; //clear manual update bit
__raw_writel(tcon, S3C2410_TCON);
}
static void PWM_Stop(void)
{
s3c2410_gpio_cfgpin(S3C2410_GPB(0), S3C2410_GPIO_OUTPUT);//设置GPB0 为输出
s3c2410_gpio_setpin(S3C2410_GPB(0), 0);//设置GPB0 为低电平,使蜂鸣器停止
}
static int s3c24xx_pwm_open(struct inode *inode, struct file *file)
{
if (!down_trylock(&lock))//是否获得信号量,是down_trylock(&lock)=0,否则非0
return 0;
else
return -EBUSY;//返回错误信息:请求的资源不可用
}
static int s3c24xx_pwm_close(struct inode *inode, struct file *file)
{
PWM_Stop();
up(&lock);//释放信号量lock
return 0;
}
/*cmd 是1,表示设置频率;cmd 是2 ,表示停止pwm*/
static int s3c24xx_pwm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd)
{
case PWM_IOCTL_SET_FREQ://if cmd=1 即进入case PWM_IOCTL_SET_FREQ
if (arg == 0)//如果设置的频率参数是0
return -EINVAL;//返回错误信息,表示向参数传递了无效的参数
PWM_Set_Freq(arg);//否则设置频率
break;
case PWM_IOCTL_STOP:// if cmd=2 即进入case PWM_IOCTL_STOP
PWM_Stop();//停止蜂鸣器
break;
}
return 0;//成功返回
}
/*初始化设备的文件操作的结构体*/
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.open = s3c24xx_pwm_open,
.release = s3c24xx_pwm_close,
.ioctl = s3c24xx_pwm_ioctl,
};
static struct miscdevice misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
static int __init dev_init(void)
{
int ret;
init_MUTEX(&lock);//初始化一个互斥锁
ret = misc_register(&misc);//注册一个misc 设备
if(ret < 0)
{
printk(DEVICE_NAME "register falid!n");
return ret;
}
printk (DEVICE_NAME "tinitialized!n");
return 0;
}
static void __exit dev_exit(void)
{
misc_deregister(&misc);//注销设备
}
module_init(dev_init);
module_exit(dev_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("FriendlyARM Inc.");
MODULE_DESCRIPTION("S3C2410/S3C2440 PWM Driver");

以上驱动程序中,一些关键词的解释和说明如下:
(1) CPU 计数器控制寄存器
1>配置定时器输入时钟
TCFG0-时钟配置寄存器0,用于获得预分频值(1~255)
TCFG1-时钟配置寄存器1,用于获得分割值(2,4,8,16,32)
定时器输入时钟频率=PLCK/{预分频+1}/{分割值}
2>配置PWM 的占空比
TCNTB0-定时器0 计数缓存寄存器,是由定时器的输入时钟分频得到,是脉宽调制的频率。
TCMTB0-定时器0 比较缓存寄存器,用于设定PWM 的占空比,寄存器值为高定平的
假设TCNTB0 的频率是160,如果TCMTB0 是110,则PWM 在110 个周期是高定平,50 周期是低电平,从而占空比为11:5。
3>定时器控制寄存器TCON
TCON[0~4]用于控制定时器0

(2) 读写寄存器的函数:__raw_readl和__raw_writel
读端口寄存器用__raw_readl(a ),该函数从端口a 返回一个32 位的值。相关的定义在include/asm-arm/io.h 中。#define __raw_readl(a) (*(volatile unsigned int*)(a)),写端口寄存器用__raw_writel(v,a),该函数将一个32 位的值写入端口a 中。相关的定义在include/asm-arm/io.h中。#define __raw_writel(v,a) (*(volatile unsigned int*)(a) = (v))。此处设置功能控制寄存器,将相应的引脚设为输出状态。
(3 )内核中操作gpio
gpio_cfgpin配置相应GPIO 口的功能
gpio_setpinIO 口为输出功能时,写引脚
(4) 内核中基于信号量的Llinux 的并发控制
在驱动程序中,当多个线程同时访问相同的资源时,可能会引发“竞态”,因此必须对共享资源进行并发控制。信号量(绝大多数作为互斥锁使用)是一种进行并发控制的手段(还有自旋锁,它适合于保持时间非常短的时间)。信号量只能在进程的上下文中使用。
void init_MUTEX(&lock)初始化一个互斥锁,即他把信号量lock 设置为1。
void up (&lock) 释放信号量,唤醒等待者。
int down_trylock(&lock)尝试获得信号量lock ,如果能够立刻获得,就获得信号量,并返回为0.否则返回非0.并且它不会导致休眠,可以在中断上下文中使用。在PWM 中,当计数值溢出时,就会引发计数中断。所以在这里用这个函数来获得信号。

【3】为内核添加按键设备的内核配置选项

打开 linux-2.6.32.2/drivers/misc/Kconfig 文件,定位到39行附近,加入如下红色部分内容:

config MINI2440_BUZZER
tristate "Buzzer driver for FriendlyARM Mini2440 development boards"
depends on MACH_MINI2440
default y if MACH_MINI2440
help
this is buzzer driver for FriendlyARM Mini2440 development boards

config ATMEL_PWM
tristate "Atmel AT32/AT91 PWM support"
depends on AVR32 || ARCH_AT91SAM9263 || ARCH_AT91SAM9RL || ARCH_AT91CAP9
help
This option enables device driver support for the PWM channels
on certain Atmel processors. Pulse Width Modulation is used for
purposes including software controlled power-efficient backlights
on LCD displays, motor control, and waveform generation.

【4】把对应的驱动目标文件加入内核

打开linux-2.6.32.2/drivers/misc/Makefile,定位到27行附近,把该驱动程序的目标文件根据配置定义加入,如下红色部分:

obj-$(CONFIG_C2PORT)+= c2port/
obj-$(CONFIG_MINI2440_BUTTONS) += mini2440_buttons.o
obj-$(CONFIG_LEDS_MINI2440) += mini2440_leds.o
obj-$(CONFIG_MINI2440_ADC) += mini2440_adc.o
obj-$(CONFIG_MINI2440_BUZZER) += mini2440_pwm.o
obj-y+= eeprom/
obj-y+= cb710/

这样

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

双系统将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对双系统的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 双系统 Windows Linux

安装Linux操作系统并不复杂,下面是一个大致的步骤指南,以帮助您完成安装。1. 下载Linux发行版:首先,您需要从Linux发行版官方网站下载最新的ISO镜像文件。

关键字: Linux 操作系统 ISO镜像

计算机是由一堆硬件组成的,为了有限的控制这些硬件资源,于是就有了操作系统的产生,操作系统是软件子系统的一部分,是硬件基础上的第一层软件。

关键字: Linux 操作系统 计算机

Linux操作系统是一套免费使用和自由传播的类Unix操作系统,通常被称为GNU/Linux。它是由林纳斯·托瓦兹在1991年首次发布的,并基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。Lin...

关键字: Linux 操作系统

所谓进程间通信就是在不同进程之间传播或交换信息,它是一组编程接口,让程序员能够协调不同的进程,使之能在一个操作系统里同时运行,并相互传递、交换信息;还可以让一个程序能够在同一时间里处理许多用户的需求。

关键字: Linux 进程通信 编程接口

串口通信作为一种最传统的通信方式,在工业自动化、通讯、控制等领域得到广泛使用。

关键字: Linux 串口通信 通讯

2023年11月16日: MikroElektronika(MIKROE) ,作为一家通过提供基于成熟标准的创新式硬软件产品来大幅缩短开发时间的嵌入式解决方案公司,今天宣布推出一款基于单线设备的软硬件开源解决方案Cli...

关键字: 嵌入式 Linux 操作系统

Linux是一种免费使用和自由传播的类Unix操作系统,其内核由林纳斯·本纳第克特·托瓦兹于1991年10月5日首次发布。它主要受到Minix和Unix思想的启发,是一个基于POSIX的多用户、多任务、支持多线程和多CP...

关键字: Linux 操作系统

本文中,小编将对嵌入式予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 嵌入式 Linux

在这篇文章中,小编将为大家带来嵌入式 Linux的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 嵌入式 Linux
关闭
关闭