当前位置:首页 > 单片机 > 单片机
[导读]【实验目的】输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。【实验内容】输出7路PWM信号,并用示波器测量输出。【实验原理】1、时

【实验目的】

输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。

【实验内容】

输出7路PWM信号,并用示波器测量输出。

【实验原理】

1、时基单元初始化

TIM1和TIM8使用内部时钟时,时钟由APB2提供。但是定时器的时钟并不是直接由APB2提供,而是来自于输入为APB2的一个倍频器。当APB2的与分频系数为1时,这个倍频器不起作用,定时器时钟频率等于APB2时钟。当APB2预分频系数为其他时这个倍频器起作用。定时器的输入频率等于APB2的2倍。本实验中,APB2时钟被设置成了84M是对系统时钟进行2分频。因此定时器的输入时钟是84M×2 = 168M = SYSCLK。(PS:这个倍频我在ST的手册上边没有找到,是网上搜索得到的结果,与实际结果对比是正确的)

TIM_Prescaler 为预分频值,为0时分频系数为1.

TIM_Period 为每个周期计数值,从0开始计数所以其值应为计数次数减去1。

TIM_RepetitionCounter是F4新增的一个东西,只有高级定时器TIM1和TIM8有效,对应寄存器RCR。意思就是每TIM_RepetitionCounter+1个技术周期产生一次中断。

我定义的时基如下,将产生频率为20K的即使基准:

TimerPeriod = (SystemCoreClock / 20000 ) - 1;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
//时基初始化
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向
TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

2、计时输出

ccr1、2、3、4为各个技术周期的TIM_Pulse。即每当计数到这些个值的时候,PWM波形就会反转。

ccr1 = TimerPeriod / 2; //占空比1/2 = 50%
ccr2 = TimerPeriod / 3; //占空比1/3 = 33%
ccr3 = TimerPeriod / 4; //占空比1/4 = 25%
ccr4 = TimerPeriod / 5; //占空比1/5 = 20%

定义输出部分:

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = ccr1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//输出同相,TIM_OCNPolarity_High时输出反相
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

TIM_OC1Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr2;
TIM_OC2Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr3;
TIM_OC3Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr4;
TIM_OC4Init(TIM1,&TIM_OCInitStructure);

TIM_Cmd(TIM1,ENABLE);
TIM_CtrlPWMOutputs(TIM1,ENABLE);

3、到这里就完成了定时器的配置,下边是GPIO引脚的配置

使用GPIOE的8、9、10、11、12、13、14引脚进行PWM输出。配置如下:

void TIM1_GPIO_Config(void)
{
//PE 8 9 10 11 12 13 14输出
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
| GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);

GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
}

输出波形图:

同相输出时候:

OC1/OC1N

OC2/OC2N

OC3/OC3/N

OC4

反相输出

OC1/OC1N

OC2/OC2N

OC3/OC3/N

OC4

完整的应用代码:

使用时只主要两行即可

//主函数调用

TIM1_GPIO_Config();
Tim1_Config();

//定时器输出引脚初始化

void TIM1_GPIO_Config(void)
{
//PE 8 9 10 11 12 13 14输出
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
| GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);

GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);

}

//TIM1做PWM输出
void Tim1_Config(void)
{
TimerPeriod = (SystemCoreClock / 20000 ) - 1;
ccr1 = TimerPeriod / 2; //占空比1/2 = 50%
ccr2 = TimerPeriod / 3; //占空比1/3 = 33%
ccr3 = TimerPeriod / 4; //占空比1/4 = 25%
ccr4 = TimerPeriod / 5; //占空比1/5 = 20%

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
//时基初始化
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向
TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);


TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = ccr1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

TIM_OC1Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr2;
TIM_OC2Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr3;
TIM_OC3Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr4;
TIM_OC4Init(TIM1,&TIM_OCInitStructure);

TIM_Cmd(TIM1,ENABLE);
TIM_CtrlPWMOutputs(TIM1,ENABLE);
}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将对pwm的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: pwm 脉冲宽度调制

在下述的内容中,小编将会对PWM控制器的相关消息予以报道,如果PWM控制器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: pwm 控制器 pwm控制器

在下述的内容中,小编将会对PWM的相关消息予以报道,如果PWM是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: pwm 变换器

在这篇文章中,小编将为大家带来PWM变换器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: pwm 变换器 pwm变换器

pwm控制器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对pwm控制器的相关情况以及信息有所认识和了解,详细内容如下。

关键字: pwm 控制器 mppt

今天,小编将在这篇文章中为大家带来pwm控制器的有关报道,通过阅读这篇文章,大家可以对pwm控制器具备清晰的认识,主要内容如下。

关键字: pwm 控制器 mppt

CPU风扇转速调节很很多方法,其中有一种就是设置PWM斜率值,这是一种脉冲宽度调制方法,该操作需要在UEFI BIOS中设置,若是用户并未使用过PWM值,可以看看下文了解主板风扇PWM调速设置过程。

关键字: pwm 调节

随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,...

关键字: pwm 解析

PWM调光是什么

关键字: pwm 正弦半波

脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。

关键字: pwm 解析
关闭
关闭