当前位置:首页 > 单片机 > 单片机
[导读]在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。  ②、HSE是高速外部时钟

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。  ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。  ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。  ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。  ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

点击进入看全图。

  其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。  另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。  系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:  ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。  ②、通过8分频后送给Cortex的系统定时器时钟。  ③、直接送给Cortex的空闲运行时钟FCLK。  ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。  ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。  在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。  需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。  连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。  连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。对于单片机系统来说,CPU和总线以及外设的时钟设置是非常重要的,因为没有时钟就没有时序。由于时钟是一个由内而外的东西,具体设置要从寄存器开始。

RCC寄存器结构,RCC_TypeDeff,在文件“stm32f10x.h”中定义如下:(v3.4库)1059行->1081行。

typedef struct

{

__IO uint32_t CR;

__IO uint32_t CFGR;

__IO uint32_t CIR;

__IO uint32_t APB2RSTR;

__IO uint32_t APB1RSTR;

__IO uint32_t AHBENR;

__IO uint32_t APB2ENR;

__IO uint32_t APB1ENR;

__IO uint32_t BDCR;

__IO uint32_t CSR;


#ifdef STM32F10X_CL

__IO uint32_t AHBRSTR;

__IO uint32_t CFGR2;

#endif/*STM32F10X_CL*/


#ifdefined(STM32F10X_LD_VL)||defined(STM32F10X_MD_VL)||defined(STM32F10X_HD_VL)

uint32_t RESERVED0;

__IO uint32_t CFGR2;

#endif/*STM32F10X_LD_VL||STM32F10X_MD_VL||STM32F10X_HD_VL*/

}RCC_TypeDef;

一般板子上只有8Mhz的晶振,而增强型最高工作频率为72Mhz,显然需要用PLL倍频9倍,这些设置都需要在初始化阶段完成。使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值RCC_DeInit;
2、打开外部高速时钟晶振HSERCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟RCC_HCLKConfig;
5、设置高速AHB时钟RCC_PCLK2Config;
6、设置低速速AHB时钟RCC_PCLK1Config;
7、设置PLLRCC_PLLConfig;
8、打开PLLRCC_PLLCmd(ENABLE);
9、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()为了方便说明,借用一下例程的RCC设置函数,并用中文注释的形式加以说明:

static void RCC_Config(void)

{


/*这里是重置了RCC的设置,类似寄存器复位*/

RCC_DeInit();


/*使能外部高速晶振*/

RCC_HSEConfig(RCC_HSE_ON);


/*等待高速晶振稳定*/

HSEStartUpStatus=RCC_WaitForHSEStartUp();


if(HSEStartUpStatus==SUCCESS)

{

/*使能flash预读取缓冲区*/

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);


/*令Flash处于等待状态,2是针对高频时钟的,这两句跟RCC没直接关系,可以暂且略过*/

FLASH_SetLatency(FLASH_Latency_2);


/*HCLK=SYSCLK 设置高速总线时钟=系统时钟*/

RCC_HCLKConfig(RCC_SYSCLK_Div1);


/*PCLK2=HCLK 设置低速总线2时钟=高速总线时钟*/

RCC_PCLK2Config(RCC_HCLK_Div1);


/*PCLK1=HCLK/2 设置低速总线1的时钟=高速时钟的二分频*/

RCC_PCLK1Config(RCC_HCLK_Div2);


/*ADCCLK=PCLK2/6 设置ADC外设时钟=低速总线2时钟的六分频*/

RCC_ADCCLKConfig(RCC_PCLK2_Div6);


/*SetPLL clock outputto72MHz using HSE(8MHz)as entry clock*/

//这句很关键

/*利用锁相环讲外部8Mhz晶振9倍频到72Mhz*/

RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);


/*Enable PLL 使能锁相环*/

RCC_PLLCmd(ENABLE);



/*Wait till PLLisready 等待锁相环输出稳定*/

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET)

{}


/*SelectPLL as system clock source 将锁相环输出设置为系统时钟*/

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);


/*Wait till PLLisused as system clock source 等待校验成功*/

while(RCC_GetSYSCLKSource()!=0x08)

{}

}


/*Enable FSMC,GPIOD,GPIOE,GPIOF,GPIOGandAFIO clocks*/

//使能外围接口总线时钟,注意各外设的隶属情况,不同芯片的分配不同,到时候查手册就可以

RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC,ENABLE);


RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_GPIOE|

RCC_APB2Periph_GPIOF|RCC_APB2Periph_GPIOG|

RCC_APB2Periph_AFIO,ENABLE);

}

由上述程序可以看出系统时钟的设定是比较复杂的,外设越多,需要考虑的因素就越多。同时这种设定也是有规律可循的,设定参数也是有顺序规范的,这是应用中应当注意的,例如PLL的设定需要在使能之前,一旦PLL使能后参数不可更改。经过此番设置后,由于我的电路板上是8Mhz晶振,所以系统时钟为72Mhz,高速总线和低速总线2都为72Mhz,低速总线1为36Mhz,ADC时钟为12Mhz,USB时钟

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32

通用MCU的成功与否,产品本身PPA固然重要,但除此外很大程度上取决于开发生态。生态的繁荣可以让其中的每一位参与者受益,当然也会反哺到MCU产品本身,影响到新的产品定义和走向。

关键字: ST STM32 MCU

摘要:在水位传感器的出厂检测过程中需要进行气密性检测,为此,设计了一个基于STM32的水位传感器气密性检测仪。该检测仪采用直压式气体检漏的方法,以STM32F030R8为控制核心,控制气泵进行充气,压力传感器检测气压并通...

关键字: 气密性 水位传感器 STM32

在2023年STM32峰会上,看通用MCU的未来发展方向。

关键字: STM32 ST AI 无线
关闭
关闭