当前位置:首页 > 单片机 > 单片机
[导读]基于80C51单片机的电子储物柜系统

基于80C51单片机的电子储物柜系统

 

电路描述:

安全是我们日常的生活中最关心的问题。 每个人都觉得安全问题是非常至关重要的,在家里的门和安全,可以尽可能多的安全。 为了对于门访问安全

因此,我们打算通过引进一个电子密码锁系统,该系统包括一个人得到一个访问某些项目之前要输入密码的安全性,以及在家里,一个房间密码锁系统,不只是普通的单用户密码锁系统,需要用户插入已编程的代码来访问一个房间; 它是一个密码锁系统,有密码而且可以启用多个用户访问。

在基于51单片机的门储物柜,只允许授权人员进入限制区域的门禁系统。 该系统由8位微控制器AT89C2051具有ROM的2K字节的程序存储器完全控制。 该系统具有通过该密码,可以通过它来输入键盘。 当输入的密码与存储在存储器中的口令相等则门被打开。 如果我们输入了错误的密码超过三次,然后报警接通。

LCD的数据引脚连接到P1口和RS,R / W,E引脚连接到P0.2,P0.3,P0.4。 L293D采用旋转电机打开和关闭更衣室。 A 4 * 3键盘用于输入数字0到9,“*”,“#”。 有一个系统菜单,包含了开放式储物柜三个按钮,重设密码,并关闭了更衣室。

code:

#include< reg51.h >

#define col P2

#define row P3

sbit m1=P3^4;

sbit m2=P3^5;

sbit bu=P0^1;

sbit rs=P0^2;

sbit rw=P0^3;

sbit en=P0^4;

sbit start=P0^5;

sbit rst=P0^6;

sbit mp=P0^7;

sfr lcddata=0x90;

void delay(int a)

{

int i,j;

for(i=0;i for(j=0;j<1100;j++);

}

void command(unsigned char s) //初始化LCD的

{

lcddata=s;

rs=0;

rw=0;

en=1;

delay(5);

en=0;

}

void lcddisplaydata(unsigned char s) // LCD的数据写入

{

lcddata=s;

rs=1;

rw=0;

en=1;

delay(8);

en=0;

}

void displaydata(unsigned char *word)

{

int x;

for(x=0;word[x]!=0;x++) //LCD的数据写入

{

lcddisplaydata(word[x]);

}

}

unsigned char array[3][4]={‘0′,’1′,’2′,’3′,

‘4’,’5′,’6′,’7′,

‘8’,’9′,’*’,’#’};

int n=0;

int m=0;

int i,p,q,r;

void main()

{

unsigned char colloc, rowloc;

unsigned char array1[4];

unsigned char array2[4]={‘3′,’1′,’1′,’2′};

unsigned char array3[4];

LOCKER1:

col=0xFF;

row=0x00;

m1=0;

m2=0;

bu=0;

mp=1;

p=0;

q=0;

r=0;

m=0;

start=1;

rst=1;

command(0x01);

command(0x38);

command(0x0C);

command(0x84);

displaydata(“PRESS KEY”);

command(0xC0);

displaydata(“FROM SYSTEM MENU”);

while(1)

{

if(start==0)

{

p=1;

goto LOCKER2;

}

else if(rst==0)

{

q=1;

goto LOCKER3;

}

}

LOCKER2:

n=0;

command(0x01);

command(0x82);

delay(10);

displaydata(“Enter Your”);

command(0xC3);

displaydata(“Password”);

delay(80);

command(0x01);

command(0x80);

goto LOCKER5;

LOCKER3:

n=0;

command(0x01);

command(0x82);

delay(10);

displaydata(“Enter Current”);

command(0xC4);

displaydata(“Password”);

delay(80);

command(0x01);

command(0x80);

goto LOCKER5;

LOCKER4:

n=0;

m=0;

command(0x01);

command(0x83);

delay(10);

displaydata(“Enter new”);

command(0xC3);

displaydata(” Password”);

delay(80);

command(0x01);

command(0x80);

q=2;

goto LOCKER5;

LOCKER5:

col=0xFF;

while(1)

{

do

{

row=0x00;

colloc=col;

colloc &=0x0f;

}while(colloc!=0x0f);

do

{

colloc=col;

colloc &=0x0f;

}while(colloc==0x0f);

while(1)

{

row=0x0E;

colloc=col;

colloc &=0x0f;

if(colloc!=0x0f)

{

rowloc=0;

break;

}

row=0x0D;

colloc=col;

colloc &=0x0f;

if(colloc!=0x0f)

{

rowloc=1;

break;

}

row=0x0LOCKER11;

colloc=col;

colloc &=0x0f;

if(colloc!=0x0f)

{

rowloc=2;

break;

}

}

if(p==1)

{

if(colloc==0x0E)

{

array1[n]=array[rowloc][0];

n++;

goto LOCKER6;

}

else if(colloc==0x0D)

{

array1[n]=array[rowloc][1];

n++;

goto LOCKER6;

}

else if(colloc==0x0B)

{

array1[n]=array[rowloc][2];

n++;

goto LOCKER6;

}

else if(colloc==0x07)

{

array1[n]=array[rowloc][3];

n++;

goto LOCKER6;

}

}

else if(q==1)

{

if(colloc==0x0E)

{

array1[n]=array[rowloc][0];

n++;

goto LOCKER7;

}

else if(colloc==0x0D)

{

array1[n]=array[rowloc][1];

n++;

goto LOCKER7;

}

else if(colloc==0x0B)

{

array1[n]=array[rowloc][2];

n++;

goto LOCKER7;

}

else if(colloc==0x07)

{

array1[n]=array[rowloc][3];

n++;

goto LOCKER7;

}

}

else if(r==2)

{

if(colloc==0x0E)

{

array1[n]=array[rowloc][0];

n++;

goto LOCKER11;

}

else if(colloc==0x0D)

{

array1[n]=array[rowloc][1];

n++;

goto LOCKER11;

}

else if(colloc==0x0B)

{

array1[n]=array[rowloc][2];

n++;

goto LOCKER11;

}

else if(colloc==0x07)

{

array1[n]=array[rowloc][3];

n++;

goto LOCKER11;

}

}

else if(q==2)

{

if(colloc==0x0E)

{

array2[n]=array[rowloc][0];

n++;

goto LOCKER9;

}

else if(colloc==0x0D)

{

array2[n]=array[rowloc][1];

n++;

goto LOCKER9;

}

else if(colloc==0x0B)

{

array2[n]=array[rowloc][2];

n++;

goto LOCKER9;

}

else if(colloc==0x07)

{

array2[n]=array[rowloc][3];

n++;

goto LOCKER9;

}

}

else if(q==3)

{

if(colloc==0x0E)

{

array3[n]=array[rowloc][0];

n++;

goto LOCKER8;

}

else if(colloc==0x0D)

{

array3[n]=array[rowloc][1];

n++;

goto LOCKER8;

}

else if(colloc==0x0B)

{

array3[n]=array[rowloc][2];

n++;

goto LOCKER8;

}

else if(colloc==0x07)

{

array3[n]=array[rowloc][3];

n++;

goto LOCKER8;

}

}

}

LOCKER6:

if(n<4)

{

lcddisplaydata(‘*’);

goto LOCKER5;

}

else if(n==4)

{

lcddisplaydata(‘*’);

delay(50);

if(array1[1]==array2[1]&&array1[2]==array2[2]&&array1[3]==array2[3]&&array1[0]==array2[0])

{

command(0x01);

command(0x80);

displaydata(“RIGHT PASSWORD”);

delay(50);

m=0;

n=0;

goto LOCKER14;

}

else

{

command(0x01);

command(0x80);

displaydata(“WRONG PASSWORD”);

delay(50);

goto LOCKER15;

}

}

LOCKER7:

if(n<4)

{

lcddisplaydata(‘*’);

goto LOCKER5;

}

else if(n==4)

{

lcddisplaydata(‘*’);

delay(50);

if(array1[1]==array2[1]&&array1[2]==array2[2]&&array1[3]==array2[3]&&array1[0]==array2[0])

{

goto LOCKER4;

}

else

{

goto LOCKER12;

}

}

LOCKER8:

if(n<4)

{

lcddisplaydata(‘*’);

goto LOCKER5;

}

else if(n==4)

{

lcddisplaydata(‘*’);

delay(50);

if(array3[1]==array2[1]&&array3[2]==array2[2]&&array3[3]==array2[3]&&array3[0]==array2[0])

{

command(0x01);

command(0x80);

delay(10);

displaydata(“New Password has”);

command(0xC3);

displaydata(“been set”);

delay(100);

command(0x01);

m=0;

goto LOCKER1;

}

else

{

goto LOCKER13;

}

}

LOCKER9:

if(n<4)

{

lcddisplaydata(‘*’);

goto LOCKER5;

}

else if(n==4)

{

lcddisplaydata(‘*’);

delay(50);

m=0;

goto LOCKER10;

}

LOCKER10:

{

command(0x01);

command(0x80);

delay(10);

displaydata(“Conform Password”);

delay(50);

command(0x01);

q=3;

n=0;

goto LOCKER5;

}

LOCKER11:

if(n<4)

{

lcddisplaydata(‘*’);

goto LOCKER5;

}

else if(n==4)

{

lcddisplaydata(‘*’);

delay(50);

if(array1[1]==array2[1]&&array1[2]==array2[2]&&array1[3]==array2[3]&&array1[0]==array2[0])

{

bu=0;

goto LOCKER1;

}

else

{

goto LOCKER16;

}

}

LOCKER12:

{

command(0x01);

command(0x80);

m++;

if(m<3)

goto LOCKER3;

else

bu=1;

delay(500);

bu=0;

goto LOCKER1;

}

LOCKER13:

{

command(0x01);

command(0x80);

m++;

if(m<3)

goto LOCKER10;

else

goto LOCKER1;

}

LOCKER14:

{

m1=1;

m2=0;

delay(125);

m1=0;

m2=0;

while(mp!=0);

m1=0;

m2=1;

delay(125);

m1=0;

m2=0;

delay(100);

command(0x01);

command(0x80);

goto LOCKER1;

}

LOCKER15:

{

command(0x01);

command(0x80);

m++;

if(m<3)

goto LOCKER2;

else

bu=1;

r=2;

p=0;

q=0;

n=0;

goto LOCKER5;

}

LOCKER16:

{

command(0x01);

command(0x80);

n=0;

goto LOCKER5;

}

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备

PLC(可编程逻辑控制器)和单片机是两种不同的控制设备,它们之间存在明显的区别:

关键字: 单片机 plc 控制器

Holtek隆重推出全新一代32-bit Arm® Cortex®-M0+ 5V CAN MCU - HT32F53231/HT32F53241/HT32F53242/HT32F53252。这一系列单片机带有来自Bosc...

关键字: MCU 工业自动化 单片机

Holtek精益求精,宣布推出全新5V宽电压Arm® Cortex®-M0+ 32-bit MCU系列HT32F50431/HT32F50441/HT32F50442/HT32F50452。此系列MCU经多方位升级能满...

关键字: 单片机 智能家居 工业控制
关闭
关闭