当前位置:首页 > 通信技术 > 通信技术
[导读]AD9957是一款内置14位D/A转换器的正交数字上变频器(QDUC)。介绍AD9957的结构、功能特点,并结合单片机STC12C5410实现一种雷达上变频电路的设计。该系统不但简化老式变频电路的复杂结构,而且提高其稳定性和可靠性,具有广泛的发展应用前景。

1 引言
   
雷达设计中,上变频电路的作用是将晶体振荡器产生的雷达信号混频成射频信号,经信号放大,达到发射机所需的功率,经滤波后将信号送至发射机,通过雷达天线发射。一般雷达的上变频电路采用混频方式设计,由放大器、滤波器、耦合器、隔离器等元器件组成,设计存在电路复杂、稳定度不高、调试困难等缺点。因此,选择QDUC器件AD9957为核心设计雷达上变频器,取代传统的上变频电路。

2 器件介绍
2.1 AD9957

    AD9957是一款1 GS/s速度正交数字上变频器(ODUC),它有18路I/Q数据通道和14位D/A转换器,具有频率转换时间短、频率分辨率高、频率稳定度高、输出信号频率和相位可快速程控切换、器件体积小、功耗低等优点,因此可以很容易地对信号进行上变频操作。该器件还拥有250 MHz的I/O数据吞吐量速率,相位噪声小于-125 dBc/Hz,SFDR(无杂散动态范围)大于80 dB,具有增强数据吞吐量的串行I/O端口(SPI),内置多器件同步功能,可采用软件/硬件控制以降低功耗,支持测试向量和幅度斜坡式控制功能,1.8 V供电,超低功耗。
    AD9957支持高达400 MHz输出的QDUC,内部集成有高速DDS、14 bit D/A转换器、时钟倍频电路和数字滤波器。通过一个公用系统时钟在器件内部同步独立的通道,AD9957可对由于模拟处理(例如滤波、放大)或PCB布线失配而产生的外部信号通道的不均衡进行有效的校正。AD9957的内部结构如图1所示。它由并行数据时序和控制逻辑、程序寄存器、反向正弦滤波器、内插级联积分梳状滤波器、内部时钟控制逻辑A/D转换器、数据寄存器和SPI串行通信接口控制器等组成。图中Cs为器件的片选信号输入端,低电平有效。SDIO为双向引脚,和SDO引脚一起用于串行操作的数据输入和输出。SCLK为I/O串行操作时钟输入端,在该端的上升沿写入数据,下降沿读出数据。IOUT为输出引脚,有一个互补输出端,使用时需接电阻至数字地。

2.2 STC12C5410
    单片机选择STC12C5410,它是新一代增强型、低功耗51单片机,具有2 KB非易失。E2PROM和SPI接口,非常方便与AD9957接口实现对信号的控制。同时由于STC12C5410具有先进的RISC精简指令集结构、硬件看门狗、4路.PWM、8路高速A/D转换、超强抗干扰、宽电压和低功耗等特点,在此作为控制器件使用。


3 工作过程和SPI接口通信
3.1 QDUC工作原理
   
AD9957有多种工作模式,在此选用数字上变频工作模式。18位I路数据和18位Q路数据并行输入,输入过程以交叉存取的方式进行,即一组18位的I路数据后面紧跟着一组18位的O路数据,后面再紧跟着一组18位的I路数据,以此类推。对I、Q两路信号同时进行内部采样,每个采样数据以并行方式传播。I、Q数据通道激活后,并行数据时钟保证I、Q数据同步传送。引脚PROFILE和I/O_UPDATE同步并行数据时钟。
    数字频率合成器核心提供一个积分振荡器。产生一个求积分的调制数据流,数据流通过反向正弦滤波器发送。经14位D/A转换器,由此产生求积分的调制模拟输出信号。
3.2 SPI接口通信
    AD9957具有SPI串行通信接口,极易实现与单片机的通信。SPI通信是通过SDIO、SDO、CS和SCLK等引脚实现的。为能正确传送数据到AD9957的数据寄存器,需严格遵循通信命令格式及时序要求。表1为读取寄存器命令格式。命令序列由8位二进制数组成,第1位为读/写控制位,为“1”则读取寄存器数据,为“0”则向寄存器中写入数据;中间两位为无关位:最后5位为寄存器选择位,DO~D4分别对应寄存器A0~A4。图2说明向AD9957写指令或数据的操作时序。

    AD9957与单片机的通讯周期分为2个阶段,第1阶段为指令周期,当SCLK为上升沿时,将8位数据依次写入AD9957中;第2阶段为数据传送周期,此时传送波形参数的控制字。其中CS为低电平的时间必须为16个时钟的整数倍,否则将中止命令。STC12C5410单片机为了与AD9957的SPI通信相对应,单片机选择主模式作为主机工作,AD9957作为从机工作。按照AD9957的时序图要求,STC12C5410配置如下:控制位CPHA=1,前时钟沿驱动,后时钟沿采样,CPOL=0.SPICLK空闲时为低电平,前时钟沿为上升沿,后时钟沿为下降沿。SPI时钟速率选择为CPUCLK/16。

4 硬件电路设计
   
AD9957实现的雷达上变频电路的原理如图3所示。该电路由QDUC器件AD9957、晶体振荡器、放大滤波电路、键盘、分压电阻和单片机STC12C5410等组成。首先通过键盘向单片机发送指令参数,设置输出信号参数。单片机通过SPI接口与AD9957连接,单片机设为主工作模式,完成对AD9957内参数的写操作。为提高SPI通信的可靠性,在时钟SCLK、SDIO、SDO各线上可加100 pF的对地电容以滤除干扰毛刺。由于AD9957的IOUT输出端采用电流输出方式,所以在输出端需接对地电阻,将电流信号变为电压信号。IOUT端输出范围为8.6~31.6 mA,典型输出为20 mA,在此选择阻值为50 Ω的电阻接地,则经电流电压转化后,其输出电压约为1 V。在输出电路的后级,设计滤波放大电路,以使电路达到设计的输出要求,当频率发生变化时,滤波电路的频幅特性使其输出电压有效值也会发生一定变化,要求在后级放大电路中加入动态调节放大电路,以使输出信号幅度达到要求。


5 软件设计
   
AD9957的软件设计主要完成SPI数据读取及处理工作,采用汇编语言编写,程序流程如图4所示。首先将频率写入AD9957中,再将不同的相位写入其中,使AD9957产生频率相同、相位不同的I/Q信号,在写入过程中,将“RESET”置“1”,使AD9957不输出信号;当控制字全部写入后,调整后级放大器的倍数。同时将“RESET”置“0”,使AD9957开始工作,当频率变化时,幅度保持不变。

6 结束语
    QDUC作为上变频电路的核心,具有高稳定性、高精度、高分辨率、低功耗等优点,是上变频电路的发展方向,在雷达、通讯与测量等许多方面都有重要的应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在科技飞速发展的今天,超声波雷达作为一种高效、精确的测距技术,被广泛应用于汽车、机器人、工业自动化等多个领域。而在超声波雷达的显示界面中,颜色往往扮演着至关重要的角色,它们不仅直观地展现了雷达所探测到的物体距离和方位,还...

关键字: 超声波雷达 雷达

随着科技的快速发展,汽车安全性能的提升成为了人们日益关注的焦点。其中,倒车防撞超声波雷达作为一种重要的汽车安全技术,其测距原理和应用在提升驾驶安全方面发挥着关键作用。本文将深入探讨倒车防撞超声波雷达的测距原理,并分析其在...

关键字: 超声波雷达 雷达

在科技的浩瀚海洋中,超声波雷达声纳技术犹如一颗璀璨的明珠,以其独特的魅力和无限的可能性,正逐渐改变着我们对世界的感知方式。这项技术结合了超声波与雷达的优势,实现了对周围环境的精确感知,为众多领域带来了革命性的变革。本文将...

关键字: 超声波雷达 雷达 声纳

超声波雷达可以说是未来的感知与决策利器了。随着科技的不断进步,传感器技术已经渗透到我们生活的方方面面,其中超声波雷达以其独特的优势,在多个领域展现出了强大的应用潜力。本文将详细探讨超声波雷达的工作原理、性能特点以及在多个...

关键字: 超声波雷达 雷达

苹果公司在一些型号的iPhone(如iPhone 12 Pro、iPhone 12 Pro Max、iPhone 13 Pro、iPhone 13 Pro Max等)和iPad Pro上配备了激光雷达(LiDAR)扫描仪...

关键字: 激光雷达 3d扫描 雷达

在科技飞速发展的今天,超声波雷达作为一种重要的传感器技术,正逐渐在自动驾驶、机器人导航以及智能环境感知等领域展现出其独特的魅力。特别是在地图构建与导航方面,超声波雷达的应用不仅提高了地图的精度,还增强了导航系统的智能性和...

关键字: 超声波雷达 雷达

用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统 、信息处理等部分组成。

关键字: 数字激光雷达 雷达 发射光源

汽车激光雷达,也称为车载激光雷达,是一种利用激光作为探测手段的雷达系统。它通过发射光束来探测目标的位置、速度等信息。

关键字: 汽车 激光雷达 雷达

固态激光雷达的工作原理主要基于波的反射和接收来探测目标的特性。它通过发射器发射出一束激光束,这束激光束会照射到目标上并反射回来。

关键字: 固态 激光雷达 雷达

激光雷达通过向大气中发射激光脉冲,然后接收由气溶胶及其他成分散射回来的信号。这个过程类似于雷达系统,但使用的是激光而不是无线电波。

关键字: 气溶胶 激光雷达 雷达
关闭
关闭