当前位置:首页 > 通信技术 > 通信技术
[导读]CAN总线以其高可靠性、实时性、灵活性以及严谨的数据处理机制等特点,在工业现场和汽车行业得到广泛应用,但随着环境干扰以及节点数目的增加等对CAN总线的稳定性提出更高的要求,而面对电源地、信号地、屏蔽地、外壳地不同的接地方式又该如何处理呢?

工业现场CAN环境复杂多变,工程师面对信号的杂、乱、差却是束手无策,追根溯源对于信号的各种地你接对了吗?

CAN总线以其高可靠性、实时性、灵活性以及严谨的数据处理机制等特点,在工业现场和汽车行业得到广泛应用,但随着环境干扰以及节点数目的增加等对CAN总线的稳定性提出更高的要求,而面对电源地、信号地、屏蔽地、外壳地不同的接地方式又该如何处理呢?

如图1分别是电源地、信号地、屏蔽地以及大地四种不同地的常见符号。

图1 四种接地符号

Ø 电源地概念:

电源地也为供电地,是为保证供电电源形成完整的电流回路设置的供电地,即GND。

Ø 电源地处理:

与单电源供电的负极相连。

图2 CAN收发器电源地(GND)接线

Ø 信号地概念:

信号地也称为隔离地,为使电子设备工作时有一个统一的参考电位,避免有害电磁场的干扰,使设备稳定可靠的工作,设备中的信号电路统一参考地,即CAN-GND;

Ø 信号地处理:

许多实际应用中,设计者常直接将每个节点的参考地接于本地的大地,作为信号的返回地,看似正常可靠的做法,却存在极大的隐患!

信号地(CAN-GND)正确的接法主要分为两种:

单屏蔽层线缆:如果线缆是单屏蔽层,信号地理想接法是使用专门的信号线将所有节点信号地连接,起到参考地的作用。但如果缺少信号地线,亦可将所有节点信号地都连接到屏蔽层,但这样屏蔽效果亦差强人意。

图 3 带有屏蔽层双绞线

图 4 含信号地线双绞线连接方式

图 5 信号地与屏蔽层连接方式

双屏蔽层线缆:当使用双层屏蔽电缆时,需要将所有节点信号地连接到内屏蔽层,若使用非屏蔽线进行数据传输时,请保持信号地管脚悬空处理。

图 6 双屏蔽层信号地处理方式

所有节点信号地接到屏蔽层或者双屏蔽层的内层后,屏蔽层处理方式注意为单点接地,不可多点接地,否则会在信号地线上形成地环流。

另外,单点接地时为了加大供电地和信号地之间的隔离电阻,阻止共地阻抗电路耦合产生的电磁干扰,注意采用隔离浮地设计,通过阻容方式将屏蔽层与外壳隔离。

图 7 未进行单点接地处理的报文受到电磁干扰

Ø 屏蔽地概念:

屏蔽地(CAN-Shield)也可理解为CAN屏蔽层,部分场合也标为FG。导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地处理,保证外来的干扰信号可被该层导入大地。

图8 单屏蔽层和双屏蔽层电缆剖析

Ø 屏蔽地处理:

当使用双层屏蔽电缆时,CAN-Shield连接到外屏蔽层和DB9连接器的屏蔽壳。并且,使用DB9针式连接器时外屏蔽层会被连接到pin 5以保证当使用没有屏蔽连接的连接器时,可靠的接地。

多节点总线同样要求屏蔽地采用单点接地,防止形成回路,并且为浮地设计。

如下图9所示处理方式,CTM1051模块3脚为屏蔽地,5脚为信号地。

 

图9 双屏蔽层线中信号地、屏蔽地处理方式

Ø 外壳地概念:

静电的电荷集聚在物体的表面,一旦遇到可以释放的回路就可以形成电流。有时候产生的电压非常高,特别是在干燥的环境里。电子产品的外壳地就是用来快速地将电荷释放到大地。

Ø 外壳地处理:

外壳接地既是对人体安全的保护,也是防干扰的一种手段,因为一般情况下机壳是金属的,是非常好的屏蔽体,绝大部分辐射干扰都可以阻挡在机壳之外。通过地线引入的干扰(也叫共阻抗干扰),处理方法一般采用地线隔离技术,在外壳接地时接入阻抗,加入滤波等。

图10 信号地、屏蔽地、外壳接地连接推荐电路

Ø 改进方案建议

如果您在使用CAN总线进行调试时,遇到过偶尔通信出错,或者接收不到数据,再者一直正常使用的总线,突然出现大范围的错误,或者节点损坏。

如果您还是在使用单纯的CAN收发器,那么请换成隔离CAN收发器吧!致远的CTM隔离模块内部包含隔离DC-DC、信号隔离电路、CAN总线收发电路、基础的总线防护等。

隔离收发器可将总线和控制电路进行电气隔离,将高压阻挡在控制系统之外,可以有效地保证操作人员的人身及系统安全。不仅如此,隔离可以抑制由接地电势差、接地环路引起的各种共模干扰,保证总线在严重干扰和其它系统级噪声存在的情况下不间断、无差错运行。

图11 CAN隔离收发器推荐设计电路

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

从电动出行到绿色算力,以全领域创新助力可持续发展

关键字: AI 数据中心 电源

中国,北京-2025年9月4日-电源管理解决方案供货商Lotus Microsystems ApS与全球排名前十大的代理商益登科技(TWSE: 3048)今日共同宣布,双方签署亚太地区战略性代理合作协议。

关键字: 电源 热管理 电子设计

【2025年8月28日,德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布与台达电子工业股份有限公司(Delta Electronics,...

关键字: 数据中心 电源 AI

现代社会对计算能力的需求日益增长。人工智能 (AI) 的飞速发展推动了数据量的爆炸式增长,包括数据的创建、处理和存储。AI已渗透到现代生活的方方面面,从汽车到购物方式无所不在。在工业领域,边缘计算改变了制造业,创造了一个...

关键字: 微处理器 电源 人工智能

在电子设备的世界里,稳定的电源供应如同基石,支撑着各种电路和器件的正常运行。线性稳压电源和开关稳压电源作为两种主流的电源类型,各自有着独特的工作方式、性能特点以及适用场景。深入了解它们,对于电子工程师进行合理的电源选型和...

关键字: 线性稳压 开关稳压 电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

PLC将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: PLC 电源

本文中,小编将对PLC予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: PLC 电源

在现代电子系统中,电源的高效稳定运行至关重要。开关模式电源(SMPS)因其较高的效率,在高电流应用中得到广泛使用。而若能够精细调节电源的输出电压,将为系统带来诸多益处,如移除电源路径上的容差和压降、验证系统限幅的运作,或...

关键字: 电源 效率 数字电位计

在现代电子系统中,电源噪声问题愈发凸显,严重影响着设备的性能与稳定性。从智能手机、笔记本电脑到工业控制设备、医疗仪器,各类电子设备都面临着电源噪声的挑战。例如,在医疗成像设备中,电源噪声可能导致图像出现干扰条纹,影响诊断...

关键字: 电源 噪声 干扰
关闭