当前位置:首页 > 测试测量 > 测试测量
[导读]射频测试和测量也是如此,类似的案例比比皆是。比如一个滤波器的VSWR要求小于1.5,插入损耗要求小于1dB,同时要求工作温度范围是-30~+60oC。上述条件下测试者除了在常温下采用矢量网络分析仪测试VSWR和插入损耗,还会将被测滤波器置于高低温箱内进行同样的测试。

概述

本文试图阐述这样一个观点——射频测试和测量应遵循“你怎么用,我怎么测”的原则。

测试和测量的原则大致是相通的。比如说要测量一个潜水员在水下10米的心律,那么这项测试就应该在水下10米处完成,这种条件下获得的测试结果是真实可信的;除此以外的其他测试方法,即使是等这个潜水员上岸后马上测,所获得的结果也是与真实数据有偏差的,原因很简单——测试条件变了。

射频测试和测量也是如此,类似的案例比比皆是。比如一个滤波器的VSWR要求小于1.5,插入损耗要求小于1dB,同时要求工作温度范围是-30~+60ºC。上述条件下测试者除了在常温下采用矢量网络分析仪测试VSWR和插入损耗,还会将被测滤波器置于高低温箱内进行同样的测试。合格与否的判定条件是在规定的温度范围内电性能指标都满足要求。

上述滤波器的测试案例是再平常不过的,但仔细审视这个滤波器的指标,我们发现还有一些需要有进步探讨的话题。

我们的习惯思维

我们列出上述案例中滤波器的主要指标如下:

1. 工作频率范围:118-137MHz;

2. VSWR:不大于1.5;

3. 带内插入损耗:不大于1dB;

4. 功率容量:50W(CW);

5. 工作温度范围:-30~+60ºC

换一种方式来描述上述五项指标:在118-137MHz频率范围内、-30~+60ºC温度范围内以及50W连续波的作用下,这个滤波器的VSWR要小于1.5,插入损耗要小于1dB。

这下问题来了,可能有人会说“我们以前都是用网络分析仪测的,50W条件下的VSWR和损耗怎么测?”。于是上述的五项指标的描述被改为:在118-137MHz频率范围内、-30~+60ºC温度范围内,这个滤波器的VSWR要小于1.5,插入损耗要小于1dB;同时这个滤波器可以承受50W的连续波。对此,我们可以称之为“选择性失明”吗?显然,这是长期以来的习惯思维,因为获得一个高低温箱很容易,而搭建一个50W的测试环境不容易。然而对以下问题,我们又该如何回答呢?

☑ 既然规定了功率容量为50W,那么合格与否的判定条件是什么?

☑ 既然要求在规定的温度范围内的VSWR和损耗都要满足要求,那么从逻辑上来说,在50W的连续波功率作用下,这些指标也要满足要求,为什么就视而不见了呢?

☑ 在实际使用中,当50W的连续波功率长期作用于这个滤波器中,可能会发生什么?VSWR和损耗变差?还是会导致器件的打火、击穿乃至失效?

也许你会用一个50W的放大器对这个滤波器进行“烤机”,然后再马上用网络分析仪测试VSWR和损耗,但这就像潜水员的案例,测试条件变了,测试结果不可信。

以下我们可以再举两个案例来描述射频测试中的习惯思维。

无源互调的测试条件

案例一来自于复杂的无源互调测试。

我们知道,无源互调要在规定的频率和功率条件下进行测试。比如典型的无源互调指标可以表达为:-153dBc@2×43dBm,925和960MHz。关于无源互调测试,我们的习惯思维是:

☑ 无源互调必须在两个20W的载频作用下进行测试;

☑ 载频幅度与无源互调的大小呈1:3(dBm)的关系;

☑ 无源互调的幅度与工作频率有关,必须在相关的工作频率下进行测试;

☑ 无源互调与频率之间没有推算关系,也就是说,在900MHz频段测得的互调值不能代表1800MHz频段的互调,反之亦然。

这个案例常见的“选择性失明”现象表现在测试功率。我们时常可以听到以下的说法:

☑ 2×20W是无源互调的测试标准;

☑ 如果DUT用于2W的环境下,可以将测试功率降到2×2W来测试其无源互调;如果DUT要应用于1kW,则先用2×20W来测试其无源互调,然后再推算1kW条件下的互调值。

无源互调2×20W的测试功率起初是来自于GSM基站的标称输出功率20W,如今已经成为行业普遍认同的“标准”。实际上,在IEC62037标准中是这样描述的:

对于移动通信系统,除非有其他要求,推荐在DUT测试端加载2×20W(43dBm)。而其他系统则可能需要不同的功率电平。

这段描述清晰阐明了无源互调的测试条件应符合真实的使用环境。

射频连接器和电缆的功率容量问题

案例2则来自我们经常遇到的、并且有些疑惑的连接器和电缆等微波路由器件的功率容量问题。

图1摘自一个微波机械开关的产品手册,描述了不同规格的开关在不同频率下的功率容量。

图1、微波机械开关的功率容量

我们可以推测,图1可能来自某种仿真结果,可能是经验值,可能在某些频段上进行了实验验证。但是并没有发现具有说服力的实验数据来支撑。

另外,图1也说明了微波器件的功率容量与频率有关,这一点也否定了以往的直流替代法,在微波频段,电压和电流已失去其确切的意义。

思路回到前面的滤波器的案例,同样的问题是在规定的功率容量时,判定这个器件合格的条件是什么?

我们曾经做过一个实验来观察0.086”电缆组件在不同功率和温度条件下VSWR和插入损耗的变化关系,测试频率为900MHz。

图2显示了一条0.16m长的电缆组件在常温条件下加载不同功率时其损耗的变化情况,功率越大,损耗也越大。图3则显示了相同功率作用下,VSWR与环境温度的关系,温度越高,VSWR也越大。

图2、常温下电缆输入功率与插入损耗的关系

图3、相同功率下温度与驻波的关系

也许你会说,上述的指标变化不大。但实验结果显示其毕竟是有变化,何况在0.086”电缆手册上说明了其在900MHz时的功率容量约为170W。受条件限制,实验只是在100W时进行的,谁能说清楚在接近其功率极限时会发生什么情况?这些都需要依靠实验来验证。

结束语

本文希望表述的观点是——射频测试和测量应尽可能的模拟真实的使用环境,这样得出来的测试结论会更加有实用意义。随着微波技术、工艺、材料以及各种测试仪器的不断发展,各种细分测试系统的搭建也成为可能。当然,也不能光提出问题而没有解决方案,实际上BXT开发的PM2000系列大功率测试平台就是本文观点的实验诠释,在后续我们会不断发布实验结果,希望得到同行的指导。下一篇我们会来跟大家一起探讨对本文提出问题的解决方案,敬请期待。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

WiMAX 作为一项无线局域网技术,同当前的3G以及WIFI相比,在带宽、覆盖范围及数据率上具有明显的优势,且具有维护成本低、架设方便、建设成本低等特点。

关键字: WiMAX技术 射频测试 3G

紧凑型4x-724系列模块为高性能射频开关系统,实现可扩展性和更短的测试周期

关键字: Pickering 射频开关 射频测试

复杂设备的测试一般会面临很多挑战—它通常需要进行多阶段的测试,而且每阶段都会需要大量的测试设备和仪器。同时,复杂设备的测试过程也较为复杂,耗时较长。在许多情况下如果转换产品,则需要从头开始重新进行设置。

关键字: 艾尼克斯 Chameleon系列测试平台 射频测试

集成测试解决方案使 WSCT 能够认证 5G 移动设备并验证 E112 呼叫者定位功能

关键字: 是德科技 5G设备 射频测试

射频 (RF) 测试设备用于计算比任何其他通用测试设备支持的频率范围更高的信号。除了标准测量功能外,它们还具有确定 RF 信号(在 3 赫兹至 300 兆赫兹频率范围内传输的无线电波)特性的专门功能。

关键字: 测试设备 RF 射频测试 数据流

蓝牙技术联盟(Bluetooth Special Interest Group,SIG)预计至2025年,蓝牙设备的年出货量将从2020年的40亿台增长至60亿余台,蓝牙设备数量扩大,相应的蓝牙测试服务需求量也在上升。

关键字: 世强硬创 蓝牙 射频测试

  软件定义的无线电(Software Defined Radio,SDR) 是一种无线电广播通信技术,它基于软件定义的无线通信协议而非通过硬连线实现的。频带、空中接口协议和功能可通过软件下载和

关键字: sdr 射频测试 智能硬件

诺基亚贝尔昨日宣布率先开展中国5G技术研发试验第三阶段数字化室分(Digital Indoor System)系统的射频指标测试,完成了发射机指标的测试,充分验证了诺基亚贝尔5G Air-Sca

关键字: 5G 射频测试 诺基亚 贝尔

O-RAN联盟由中国移动、美国AT&T、德国电信、日本NTT DOCOMO,和法国Orange五家运营商于2018成立,其愿景是打造“开放”“开源”与“智能”的高灵活、低成本无线网络。 2019年底,中国三大运营商联合成...

关键字: 小基站 射频测试 研讨会 网络

TD-SCDMA终端一致性测试包括射频指标测试(参考标准:3GPPTS34.122),协议信令测试(参考标准:3GPPTS34.123)和其他测试(参考标准:3GPPTS31.120)三类测试。  其中射频指标测试分为&...

关键字: TD-SCDMA 射频测试
关闭
关闭