当前位置:首页 > 测试测量 > 测试测量
[导读]在频域、时域、阻抗域三种电学基本特性测试测量仪器中,以阻抗域测试测量仪器所用电路结构最复杂、测试操作最费时间、成套价格最高。

引言

在频域、时域、阻抗域三种电学基本特性测试测量仪器中,以阻抗域测试测量仪器所用电路结构最复杂、测试操作最费时间、成套价格最高。目前能够供应GHz级阻抗域测试测量仪器的公司亦为数不多,特别是矢量网络分析仪(VNA)只有是德科技、罗德与施瓦茨、安立等几家公司生产。VNA的最高带宽达到65GHz,前端使用变频器可将带宽扩大至120GHz,成套售价在二十万美元以上。

我们知道,任何电子元器件都可用二端或四端网络来表征,所用参数有Z(阻抗)、Y(电导)、H(混合)和S(散射),由于Z、Y、H参数的测量都涉及开路、短路条件,这些条件在GHz频段不易实现,因此VNA测量的是阻抗匹配条件下的S参数。在十年前一些测试测量专家试图从时域—频域特性测量入手,通过快速傅立叶函数变换将幅度—时间特性变成分立的幅度—频率特性,在此基础上推导出S参数。整个测试过程和测量条件与直接测量S参数相同,只是激励源从扫频发生器改为阶跃脉冲发生器,从时域反射(TDR)和时域传输(TRT)参数导出S参数。

最简单的一个物理同轴线连接点的二端口S散射矩阵见表达式(1),它是由输入端口和输出端口的入射波和反射波来定义的四个Sij参数。每个端口的电压V和电流I分别由入射波V+、I+和反射波V-、I-组成,即V=V++V-和I=I++I-。从表达式(1)和图1a可知,S11是输入端口电压反射系数,S12是反向电压增益,S21是正向电压增益,S22是输出端口电压反射系数。全部S参数都是在同轴线的输入和输出阻抗匹配的条件下获得的。

1b 四端口网络

图1 S 参数阵列

在图1b四端口的情况下,S散射矩阵要复杂得多,它由二端口扩展而成,由四组共16个Sij参数来定义,见表达式(2)。

时域和频域的变换和反变换

计算技术和数字处理促进了傅里叶变换的应用,快速傅里叶变换(FFT)和反向傅里叶变换(IFFT)使数字取样示波器的时域—频域变换,能够在1ms级内完成1024个样品的复杂计算。分立的时域—频域关系如图2所示,图中左边是一个阶跃脉冲,由极短脉冲△t取样,时间窗口等于N△t,图中右方是FTT运算后的频普分量,相应的频率增量等于△f=1/N△t,N是取样点数。图2也是数字取样示波器的基础,由极短的单位脉冲△t对快速的脉冲瞬变作顺序取样,然后在较低时域下重建快速脉冲波形。目前,数字取样示波器的△t<10ps和等效带宽达到100GHz,它的带宽超过矢量网络分析仪的65GHz,成为带宽最高的测量仪器。

图2 时域—频域变换原理

数字取样示波器主要用于测量快速瞬变的基本脉冲参数,如上升、下降、过冲、抖动时间等,还用了同轴线、电缆、微带线、同轴元件和连接器等的时域反射(TDR)和时域传输(TDT)的特性,它的分辨率可达到1mm测量从短路到开路的反射系数、传输系数和阻抗。十年前,测试测量专家已证实通过TDR/TDT测量,借助FFT变换和反变换导出S参数是可行的。当时受到数字取样示波器的等效带宽不够高,FFT变换的计算机运算时间不够快,同轴校准元件不够精确,只获得实验室的测量成果,等效带宽在10GHz左右。现在测量条件有很大改进,基于TDR/TDT的S参数测量从实验室成果变成实用成果。

图3 时域反射/传输参数与S参数的类比

基于TDR/TDT的S参数测量的取样数据首先从数字示波器获得,然后利用计算程序将取样数据变换成频域的S参数。例如两端口的4个TDR/TDT值分别相当于4个S参数,即正向TDR→S11,正向TDT→S21,反向TDR→S22,反向TDT→S12,如图3所示。最简单的测量配置是一台具有TDR/TDT插件的数字取样示波器,一台快速阶跃脉冲发生器,一套同轴线校准工具和时域—频域变换程序,如图4所示。射频仪器的标准配置都是同轴线和同轴接头输出,即外壳接地的单端输出,而不是差分的双端输出。为了测量平行微带结构或差分信号,需要选用差分输出的TDR/TDT插件。校准工具通常选用短路—开路—负载—直通(SOLT)校准技术,根据同轴线型号提供套件,目的是建立一个校准平面,消除测量系统引入的误差,提高测量结果的准确性。校准平面实际上就是测量夹具与被测元器件之间的时间参考零点,校准平面前面的测量系统的输出阻抗就应处于完全匹配状态,如图5所示。

图4 时域反射测量系统的构成

图5 时域反射测量系统的匹配

几种基于TDR/TDT的S参数测量设备

目前有三家测试测量仪器公司供应整套的基于TDR/TDT的S参数测量设备,它们是安捷伦公司的86100C系列数字取样示波器和TDR模块,泰克公司的DSA8200数字串行分析仪和80E10等TDR插件,力科公司的WaveExpert取样示波器和ST—20 TDR模块,以下简要介绍它们的特性。

安捷伦的DCA86100数字通信分析仪由86100C主机和两个54754A差分TDR模块组成,内置隧道二极管的阶跃脉冲发生器,上升时间<25ps。在86100C选件202(增强阻抗和S参数测量)软件支持下,DCA86100具有18GHz带宽,能够测量32项S参数,同时显示6个S参数,具有广泛的校准和测量功能,动态范围超过45dB 。将基于TDR/TDT的S参数测量结果与安捷伦的PNA系列四端口20GHz精确矢量网络分析仪的测量数据相比较,在10GHz的频率范围内两种结果高度匹配。图6是输入端口差分损耗SDD11的对比曲线,红色曲线由VNA方法测得,蓝色曲线由TDR/TDT方法测量,证实基于TDR/TDT的S参数测量技术具有很高可信度。

DCA86100主机还可配用86118A单端双通道模块,带宽可达到70GHz,而且使用远端探头,缩短TDR/TDT参考平面与被测元件之间的距离。但是86118A的阶跃脉冲发生器的上升时间约为25ps,为了充分发挥70GHz带宽的S参数测量能力,需要使用上升时间<10ps的阶跃脉冲发生器,安捷伦公司提供的第三方PSPL(皮秒实验室)公司的4020脉冲增强模块,能够产生<9ps的阶跃脉冲信号,配备86118A/4020模块的基于TDR/TDT的S参数测量设备,代表当前达到的最高水平。

泰克的DSA8200数字串行分析仪,它主要用于测量各种高速串行链路网络特性,包括时域反射、S参数、信号可信度和噪声。目前DSA8200具有业界的最低噪声和时间抖动最小,同时提供多种插件,从带宽10GHz至70GHz的选件,而且阶跃脉冲发生器的上升时间是12ps。例如配合80E10取样插件的DSA8200,它的带宽达到70GHz,动态范围70dB,最多可安装8个80E10插件,实现8通道输入,为多端口的S参数测量提供方便。泰克还提供差分TDR/TDT的取样插件。

DSA8200采用基于TDR/TDT的S参数测量的软件是IConnect,它的取样点达到1M点,校准过程简化,提高测量精度,缩短测量时间。DSA8200使用差分TDR/TDT测量方式获得如下的S参数带宽:

在上述数字中入射波上升时间就是阶跃脉冲发生器的上升时间。对于80E10来说,上升时间12ps可获得S参数测量的50GHz带宽。此时可测量短距离同轴线的1mm不连续点,以及100m长的电缆组合的S参数。在这种测量环境下,基于TDR/TDT的S参数测量比VNA技术更方便和精确,并且提供更多的信息。

图6 两种测量方法获得的S参数的符合程度

力科的WaveExpert数字取样示波器配合ST-20TDR模块,能够实现单端、差分的基于TDR/TDT的S参数测量。取样示波器的带宽可达100GHz,它采用PSPL公司提供的取样头,目前是业界水平最高的取样部件。ST-20模块的带宽是20GHz,阶跃脉冲时间是20ps,取样点采集长度是10万点,显然,ST-20模块的S参数测量带宽还有提高的潜力,力科公司将有更好的基于TDR/TDT的S参数测量设备推出。

还有上面提到的PSPL公司是皮秒脉冲测量仪器供应商,产品包括通用和专用脉冲发生器和阶跃脉冲发生器,取样示波器模块和取样门等,用户需要扩展以上三家S参数测量设备的特性或自行构建S参数测量设备,可考虑采用该公司的产品作为优选的部件。

基于TDR/TDT的S参数测量的误区

为了正确使用基于TRD/TRT的S参数测量方法,需要避免一些错误概念,主要表现为:

第一,完全代替VNA。VNA能够测量有源和无源的元器件,是阻抗域测量仪器中功能最全面,、最准确的设备。目前基于TRD/TRT的S参数测量只能够解决同轴线、电缆等的无源S参数测量,而且以VNA作为测量对比的标准。

第二,选择高取样率的数字存储示波器。数字存储示波器的带宽取决于取样率的提高,但基于TRD/TRT的S参数测量的带宽与取样率无关,而取决于阶跃脉冲的上升时间。因而,基于TRD/TRT的测量无需选用时域测量仪器中功能最全面,取样率最高的数字存储示波器,只要使用数字取样示波器即可。

第三,VNA的背景噪声最低。VNA使用带通滤波器和数字滤波器,具有很低的背景噪声。同样数字取样示波器使用多次平均运算,亦能显著提高信噪比。VNA的低频从100KHz或1MHz开始,而TRD/TRT的低频一直延伸至DC,后者具有更好的低频特性。

第四,基于TDR/TDT的测量的动态范围较低。早期TDR/TDT测量的动态范围只有40dB,近年来取得进展,在带宽20GHz以上时动态范围扩大到70dB,加上使用数据多次平均降噪技术,动态范围进一步得到改善,为同轴线、微带、电缆的S参数测量提供足够的动态范围。

结语

基于TDR/TDT的S参数测量是一种成功的测量技术,过去通过时域—频域的变换和反变换使两域沟通起来,现在通过时域—频域变换—S参数运算使时、频、阻抗三域沟通起来,域际互通测量技术的前景更加广阔。

测试测量仪器中VNA是最高级和最昂贵的设备,一般实验室没有测量射频/微波的S参数的的手段,而数字取样示波器较容易拥有。已经证实,在数字取样示波器基础上构建的TDR/TDT,测量S参数设备,成本不到VNA 的一半。如果考虑到VNA的单台价格20~30万美元,则节省10~15万美元是一笔可观的经费。此外,VNA需要熟练的工程技术人员操作,测量时间要半小时以上,基于TDR/TDT的S参数测量的操作比较简单,测量时间只要几分钟,的确是省钱、省力、省时的测量方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

钳形万用表是一种结合电流互感器和普通万用表功能于一体的便携式电工测量工具,主要用于非接触式测量交流电流,也可测量电压、电阻等多种电气参数。它的独特之处在于其钳口设计,使得用户无需断开电路就能方便快捷地测量线路中的电流值,...

关键字: 钳形万用表 电压测试

托盘天平是一种精密测量仪器,广泛应用于实验室、学校教育、工业生产和科研领域,主要用于测定物体的质量。正确使用托盘天平不仅可以确保测量数据的准确性,也是实验操作规范性的重要体现。以下是关于托盘天平(又称为双盘天平)的详细使...

关键字: 托盘天平 测量仪器

电桥法作为一种经典的电路测量技术,广泛应用于电阻、电容、电感等多种电子元件参数的精准测量中,尤其在电阻测量领域,它以其高精度、简便易行的特点受到工程师和技术人员的青睐。本文将详细介绍电桥法测电阻的工作原理、步骤、特点及应...

关键字: 电桥 电阻测试

综合测试仪(以下简称“综测仪”)作为一种集多种测试功能于一体的精密电子测量仪器,广泛应用于各个行业的研发、生产和维修环节,其强大的功能性使其成为现代科技领域的关键工具。本文旨在深入探讨综测仪的作用、功能及其在不同应用场景...

关键字: 综测仪 通信领域

随着科技的不断发展,测试工装作为电子产品生产过程中不可或缺的一环,其在确保产品质量和性能方面的作用日益凸显。本文将深入探讨测试工装的工作原理,分析其在科技领域的应用,并展望未来的发展趋势。

关键字: 测试工装 电子产品

超声雷达和激光雷达均属于先进的远程探测技术,尽管二者均依赖于发送信号至目标并分析反射回来的信息以获取距离、方位、速度等关键数据,但在物理机制、技术细节、应用领域以及优劣势上存在显著差异。

关键字: 超声雷达 激光雷达

激光雷达(Light Detection And Ranging,LiDAR)作为现代科技的产物,以其高度精准的空间感知能力在多个领域展现出了卓越的性能。激光雷达的多样性体现在多种分类方式上,本文将详尽阐述激光雷达的不同...

关键字: 激光雷达 LiDAR

激光雷达扫描仪(Laser Imaging Detection and Ranging,简称LiDAR Scanner)是一种先进且精密的空间感知技术设备,其结合了激光测距技术、扫描机制以及高速数据处理系统,以实现对目标...

关键字: 激光雷达扫描仪 多普勒效应

激光雷达(Light Detection and Ranging,简称LiDAR),是现代自动驾驶技术体系中的核心技术之一,其在无人驾驶汽车领域扮演着至关重要的“视觉”角色。激光雷达利用激光测距和测速原理,通过发射激光束...

关键字: 激光雷达驾驶 无人驾驶

激光雷达(Light Detection And Ranging,简称LiDAR)作为一项尖端的空间探测和测量技术,在众多领域中发挥着至关重要的作用,尤其是近年来在自动驾驶、机器人技术、遥感测绘、环境监测、国防安全等方面...

关键字: 激光雷达 LiDAR
关闭
关闭