当前位置:首页 > 测试测量 > 测试测量
[导读]在写这篇文章的时候,我其实也没有怎么做过毫米波测试,我相信正在读这篇文章的读者中大部分也没有怎么接触过毫米波测试。那么我们为什么还要这么专注于毫米波测试呢?在几年以前,我根本无法想象这么短

 

在写这篇文章的时候,我其实也没有怎么做过毫米波测试,我相信正在读这篇文章的读者中大部分也没有怎么接触过毫米波测试。那么我们为什么还要这么专注于毫米波测试呢?

在几年以前,我根本无法想象这么短时间内行业内会对毫米波应用有这么高的关注度。那时候,做为测试工程师的我,了解30GHz 到300GHz的测试仪器还只是像一个穷学生看到橱窗里的Allianware笔记本电脑的情景:“ 酷!太牛了!等我月入10w的时候一定也买一台” 然后就… … …没有然后了。

然而仅仅过了几年,40G的信号源,50G的频谱仪,67G的网分我都有幸使用了一番。

当前毫米波应用主要集中在以下几个行业上:

能够完整提供毫米波测量解决方案的仪器厂商主要是是德(安捷伦)和罗德施瓦茨两家。

频谱分析仪方面是德提供了两种测量方案,以测量77GHz信号为例:

1. 采用PSA或者PXA频谱分析仪+谐波混频器11970系列或M1970系列智能混频器;

2. 如果你是土豪:那就直接买一台最新上市的UXA系列频谱分析仪N9041B 回来吧!单台仪器就可以实现110GHz覆盖。

谐波混频器的测试原理是:频谱分析仪提供基础本振信号比如5GHz,混频器利用这个信号的第N次谐波做为它自己的本振信号,比如13次谐波那就是5GHz*13=65GHz。那么如果输入信号的频率是66GHz,那么混频后的中频信号就是66GHz-5GHz*13=1GHz。

传统的11970K谐波混频器,如图:

外置混频器对仪器型号和选件的要求:

使用的时候,将混频器的IF输出与频谱仪的IF输入相连,将混频器的LO输入端与频谱仪的LO输出端相连即可。频谱仪内部会根据设置好的混频器型号、谐波次数、混频损耗补偿系数(印在混频器上)对测试结果进行正确的补偿和显示。

PSA与混频器连接示意图:

PXA与混频器连接示意图:

注意:PXA与混频器连接需要一个额外的双工器,这个双工器并不好配。所以,如果大家使用PXA的时候,建议有条件的用户购买是德的智(更)能(贵)型混频器M1970系列混频器,如图:

智能混频器只需要连接一根射频线到N9030A即可,不需要额外的双工器

第一种方案是广为使用的方法,相对第二种价格更经济,仪器也比较容易找到。但是它的缺点是混频器本身是有频段限制的,并且你需要搭配链接混频器和频谱仪及被测件的所有各种滤波器、转接头、测试线缆,甚至你可能还会要用到额外的放大器等器件。这些都需要你在测试之前,仔细测量计算出每个部件的损耗,从而你才能得到准确的结果。(但是在毫米波波段下,这些部件的测试又是极其困难的!)

所以,当我们对测试结果的精度和可靠性要求更高时(非常不差钱时),可以选择购买一台是德最新推出的业内第一单机频率覆盖到110GHz的频谱分析仪--N9041B:因为110GHz使用的1.0mm接口非常精密小巧,所以仪器分别提供了两个输入接口:1.0mm接口和2.4mm接口,下图左边的是1.0mm接口。

N9041B

同样对于是德的竞争对手罗德施瓦茨也不甘示弱,FSW系列频谱分析仪就是他们对抗是德PXA、UXA系列的拳头产品。在测试毫米波频段应用时,也是有两个解决方案可供选择:

第一:使用外部混频器。

第二:使用单台仪表---FSW系列频谱分析仪。

对于传统混频器,因为它不需要与仪器传输任何数据,也不需要供电,所以它在使用上是不区分仪器厂家的,只要频谱仪具有外部混频选件,就可以使用。当然罗德也有自己的混频器---FS-Z75(50GHz到75GHz)

FSW的外部混频器接口

FS-ZXX系列谐波混频器

FSW本身也是一台最大频率覆盖到了85GHz的顶级频谱分析仪。用户可以根据需要选择具体的型号,比如FSW-43、FSW-50、FSW-67,直到FSW-85的顶级型号。

FSW85

总结:

在110GHz以内,是德和罗德施瓦茨均提供了两种测量方案供用户选择:

1. 谐波混频器+频谱分析仪。

2. 单台可达85GHz或110GHz的频谱分析仪。

在110GHz到300GHz频段,用户可以选择第三方的混频器搭建自己的测试平台,比如:VDI公司的产品。

君鉴公司目前可以提供全套的11970系列谐波混频器、M1970系列智能混频器、N9030A-44GHz,FSW-43GHz频谱分析仪等毫米波测量解决方案供客户选择。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

近日,为响应国家、省、市大力发展战略性新兴产业的号召,促进战略性新兴产业加快释放新质生产力,推动战略性新兴产业高质量发展, 2023年粤港澳大湾区战略性新兴产业领航企业暨第三届粤港澳大湾区战略性新兴产业“拓荒人物”、“青...

关键字: 数字示波器 测试测量 频谱分析仪

频谱分析仪是一种重要的电子测量仪器,用于测量信号的频谱特性。它能够将信号分解为频率成分,并提供关于每个频率成分的幅度和相位信息。频谱分析仪广泛应用于各个领域,提供了丰富的信号分析和处理功能。下面将介绍几种常见类型的频谱分...

关键字: 频谱分析仪 电子测量仪器 信号分析

当我们谈论频谱分析仪时,我们正在探讨一种极其重要的电子测量工具,它在科学、工程和通信领域都发挥着关键作用。频谱分析仪是一种用于测量信号频谱的设备,它可以帮助我们了解信号的频率成分,幅度分布以及在不同频率下的能量分布情况。...

关键字: 频谱分析仪 电子测量 电子通信

频谱分析仪是一种重要的电子测量仪器,广泛用于科学研究、通信工程、音频处理、无线电频谱管理等领域。本文将深入探讨频谱分析仪的定义、原理、工作方式以及其在各个领域的应用。

关键字: 频谱分析仪 电子测量仪器 无线电频谱管理

频谱分析仪是一种重要的电子测量仪器,用于分析信号的频谱特性。它在通信、电子设备测试、天文学、医学等领域都有广泛的应用。本文将介绍如何实现频谱分析仪的系统设计以及常用的方法,涵盖了硬件和软件层面的关键要点。

关键字: 频谱分析仪 电子测量仪器 频谱特性

频谱分析仪是用于分析信号频谱结构的设备,可以用于测量信号的频率、幅度、功率、谱线宽度等参数,是现代电子测量和通信领域中不可或缺的工具。

关键字: 频谱分析仪 信号

频谱分析仪是用于分析信号的频率成分和功率的电子设备。分辨率是频谱分析仪的一个重要指标,它决定了频谱分析仪能够分辨的信号细节和频谱特征。在频谱分析仪的使用过程中,分辨率受到多种因素的影响,这些因素包括信号频率、信号强度、分...

关键字: 频谱分析仪 信号 分辨率

频谱分析仪是用于分析信号频谱特性的重要工具,广泛应用于电子工程、通信、航空航天、医疗等领域。本文将介绍频谱分析仪的分类、工作原理及在不同领域的应用,旨在展示其在信号处理中的重要地位和作用。

关键字: 频谱分析仪 信号频谱

在现代电子系统中,噪声是影响电路性能的重要因素之一。为了对电路的噪声性能进行准确的评估,我们需要使用频谱分析仪进行测量。本文将详细介绍频谱分析仪在测量电路噪声系数中的应用,包括噪声系数的定义、频谱分析仪的工作原理、测量步...

关键字: 频谱分析仪 电路 噪声性能

频谱分析仪是用于测量信号频率、幅度和功率谱等特性的重要工具,广泛应用于电子工程、通信、生物医学等领域。本文将介绍频谱分析仪的基本原理、使用方法和技巧,帮助读者更好地理解和使用频谱分析仪。

关键字: 频谱分析仪 信号
关闭
关闭