当前位置:首页 > 测试测量 > 测试测量
[导读] 我们先来讨论这样一个问题:如果先用SOLT校准校准到同轴端面,然后分别测试被测网络与直通校准件的S参数,再将两者参数进行去嵌处理,这样得到的结果是否就是DUT参数?对于这个问题我们可以在仿真软件里

我们先来讨论这样一个问题:如果先用SOLT校准校准到同轴端面,然后分别测试被测网络与直通校准件的S参数,再将两者参数进行去嵌处理,这样得到的结果是否就是DUT参数?

对于这个问题我们可以在仿真软件里面搭建如下拓扑结构进行验证,左右fixture为40ohm的走线,DUT为45ohm的走线。

将这两个网络的参数直接去嵌后结果如下,去嵌的结果和DUT实际S参数差别非常明显。

从第一张图中的去嵌端面(蓝色虚线)可以看出实际测试网络去嵌完剩下的部分并不是真正的DUT,所以这种直接去嵌的方法并不能得到正确的DUT参数。

换一个思路,如果将直通校准件从中间位置分离出左右两边fixture,再利用去嵌功能将左右两边fixture从被测网络中移除掉,剩下的是否就是实际DUT的参数。

还是以此拓扑为例,用去嵌功能将左右两边的fixture从被测网络中移除掉,结果如下:两者的S参数吻合度非常高,说明用此方法来提取DUT的参数是可行的。

SOLT校准,TRL校准以及这种去嵌方法示意如下所示,从图中可以看出用SOLT校准+去嵌和TRL校准都可以得到DUT的参数:

进行去嵌处理的前提是要得到左右两边的fixture参数,由于实际的thru走线很难做到完全对称的结构,无法简单的将其一分为二。利用PLTS软件的AFR功能(Automatic Fixture Removal)则可以准确的分离出thru左右fixture参数。

AFR的设计有如下要求:

1. 同TRL校准件一样AFR也需要一个直通件thru,thru的左右两边的fixture需要对称且和实际测试网络上的fixture设计保持一致。
2. thru的左右两边fixture的延时和损耗需要保证一致,阻抗则不需要完全匹配一致。
3. thru的长度设计的不要太长,不然会影响测试带宽,建议thru的插损比回损大5dB以上为佳
4. 对于差分的thru建议SCD/SDC参数小于-30dB
5. 由于AFR基于时域处理,建议thru的延时要大于4倍系统上升时间

AFR分别对thru的时域阻抗T11/T22通过时域Gating功能进行处理得到T11A/T11B,再转换到频域后得到S11A和S11B,然后再根据信号流图计算出其他参数。如下图所示红色的曲线为分离出的T11A和S11A,蓝色的曲线为thru的T11和S11。

利用分离出来的fixture就可以计算出DUT参数,下图为利用AFR得出的DUT参数和利用TRL校准得出的DUT参数对比,可以看出无论是S21曲线还是S11曲线吻合度都很高。

由于AFR可以分离出左右fixture参数,则可以应用于单端口去嵌的测试场景。如下图所示为一个芯片测试板,示波器在TP1点处测量,如果想得到芯片管脚处的波形则需要在测试结果中去掉breakout channel的影响。

目前普遍的做法是做一个和breakout channel一致的replica channel,并用网分测试得出S参数,这样就可以利用示波器的去嵌算法进行处理得到芯片管脚处的波形。但是replica channel相比较实际的breakout channel结构多了一对同轴连接器(红框部分),所以这样处理得到的结果并不精确。

另外一种做法就是将replica channel长度做成两倍的breakout channel长度,并利用AFR的去嵌功能分离replica channel,这样得到的结构和replica channel一致性更高,测试出来的结果也更精确。

对于DUT两边fxiture阻抗和长度都不对称的应用场景,可以根据左右两边fixture的特性做两条thru,然后利用AFR分别对这两条thru进行分离,得出左右的fixture的参数后就可以进行去嵌计算得到DUT参数。

最新版本的PLTS里提供单端AFR功能,即只通过测试单端口开路或者短路件就可以得到走线的损耗,比如单端口的单端S参数可以转成两端口的S参数,单端口的差分S参数可以转成两端口的S参数。下图中蓝色曲线为原始的单端开路件阻抗曲线,红色的曲线为利用单端AFR转化后的阻抗曲线。两者吻合度非常高。

AFR相比较TRL校准有如下几个优势:

1. AFR只需要设置一条thru校准件,数量要比TRL校准件少很多,操作步骤也相应的减少。
2. AFR可以处理DUT两端fixture不对称的情况。
3. AFR可以进行单个端口的去嵌操作。
4. 单端AFR功能可以将单端S参数转成两端口的S参数


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

你了解DS1820工作原理嘛,今天就让我来带你深入探索数字温度传感器的科技奥秘。在科技飞速发展的今天,传感器作为获取物理世界信息的重要工具,已经广泛应用于各个领域。其中,DS1820作为一款数字温度传感器,以其独特的优势...

关键字: ds1820 数字温度传感器

在科技日新月异的今天,水质传感器作为一种重要的环境监测工具,已经广泛应用于环境保护、水资源管理、饮用水处理等多个领域。本文旨在深入解析水质传感器的类型、工作原理、应用及发展趋势,为读者揭示这一科技领域的魅力与前景。

关键字: 水质传感器 生物传感器

一直以来,涡街流量计都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来涡街流量计的相关介绍,详细内容请看下文。

关键字: 流量计 涡街流量计

钳形万用表是一种结合电流互感器和普通万用表功能于一体的便携式电工测量工具,主要用于非接触式测量交流电流,也可测量电压、电阻等多种电气参数。它的独特之处在于其钳口设计,使得用户无需断开电路就能方便快捷地测量线路中的电流值,...

关键字: 钳形万用表 电压测试

托盘天平是一种精密测量仪器,广泛应用于实验室、学校教育、工业生产和科研领域,主要用于测定物体的质量。正确使用托盘天平不仅可以确保测量数据的准确性,也是实验操作规范性的重要体现。以下是关于托盘天平(又称为双盘天平)的详细使...

关键字: 托盘天平 测量仪器

电桥法作为一种经典的电路测量技术,广泛应用于电阻、电容、电感等多种电子元件参数的精准测量中,尤其在电阻测量领域,它以其高精度、简便易行的特点受到工程师和技术人员的青睐。本文将详细介绍电桥法测电阻的工作原理、步骤、特点及应...

关键字: 电桥 电阻测试

综合测试仪(以下简称“综测仪”)作为一种集多种测试功能于一体的精密电子测量仪器,广泛应用于各个行业的研发、生产和维修环节,其强大的功能性使其成为现代科技领域的关键工具。本文旨在深入探讨综测仪的作用、功能及其在不同应用场景...

关键字: 综测仪 通信领域

随着科技的不断发展,测试工装作为电子产品生产过程中不可或缺的一环,其在确保产品质量和性能方面的作用日益凸显。本文将深入探讨测试工装的工作原理,分析其在科技领域的应用,并展望未来的发展趋势。

关键字: 测试工装 电子产品

超声雷达和激光雷达均属于先进的远程探测技术,尽管二者均依赖于发送信号至目标并分析反射回来的信息以获取距离、方位、速度等关键数据,但在物理机制、技术细节、应用领域以及优劣势上存在显著差异。

关键字: 超声雷达 激光雷达

激光雷达(Light Detection And Ranging,LiDAR)作为现代科技的产物,以其高度精准的空间感知能力在多个领域展现出了卓越的性能。激光雷达的多样性体现在多种分类方式上,本文将详尽阐述激光雷达的不同...

关键字: 激光雷达 LiDAR
关闭
关闭