当前位置:首页 > 测试测量 > 测试测量
[导读]   背景介绍  精密测量电源在提供稳定供电之余,还可以进行高精度的电压电流测量,因此可以用于完成多种相关参数的测试。以吉时利PMS 2280S精密测量电源为例,它可以在供电过程中对电压、电流数据进

  背景介绍

  精密测量电源在提供稳定供电之余,还可以进行高精度的电压电流测量,因此可以用于完成多种相关参数的测试。以吉时利PMS 2280S精密测量电源为例,它可以在供电过程中对电压、电流数据进行高速连续采集,通过网络接口进行连续的数据回传。因此,使用者可以根据需要,对采集到的数据进行复杂处理,得到最终所需要的结果。这些处理可以包括乘、除运算得到功率或电阻信息,或者在时间轴进行积分,得到电量信息,甚至根据记录下来的充放电斜率,计算超级电容的电容量。

  使用2280S 测量产品功率或内阻

  工作状态下的产品内阻或直流功耗经常是客户关心的一项指标,以LED客户为例,其二极管导通、截至特性是衡量LED性能的重要指标。另外,LED的寿命和可靠性与LED的节点温度有密切的关系,而节点由于封装原因,其温度很难通过直接测量的手段获取。为表征LED的发热性能,通常使用热阻作为参数描述这一特性。而热阻的计算公式,也与电压,电流测量有直接的关系。

  同样,继电器生产厂商也会测量继电器在导通状态下的内阻阻值,更小的内阻意味着更低的功率损耗和更长的工作寿命。在这些测试中,高精度的电压电流测试,以及稳定的直流供电都是工作条件下内阻测试的先决条件。

  传统LED客户的内阻测试要求使用性能良好的电流源进行供电,并配合以高精度AD板卡或万用表采集电压。两台设备的连接相对复杂,总成本较高。PMS 2280S电源可以工作在恒流模式(CC mode),成为性能良好的电流源,同时,其内置6.5位数字万用表,在电压,电流测试时具备独特的优势,其电流测量精度可以达到微安级,分辨率高达10纳安,电压测量精度为毫伏级,分辨率为0.1mV。回读电压、电流读数后,经过R = V/I的计算,就可以得到内阻数据。打开LXI网页界面上的Data logging功能,还可以对电压,电流数据进行长时间连续采集,有利于监测工作条件下的内阻随时间的变化。

  另外一个在内阻测量时经常遇到的问题,是线电阻的影响。通常导通电阻阻值较小,使用V/I直接计算电阻时,电源的测量结果会把连接线上的线电阻计入在内,造成测量误差。对PMS 2280S电源,我们在电源后面板提供了四线连接方式。通过四线连接的供电方式,可以把电源回读的电压和电流值定位在待测件的输入端,而不是电源的输出端,这样可以完全消除线电阻的影响,测量到的内阻阻值更加精确,连接如下图所示。

  图1 2280S 四线远端连接

  另外电源内置的Auto Zero(自归零)功能可以在每次电压或电流测量前,进行一次快速的自校准。测量由于内部热偏置或者残余电量累计造成的偏差,并在下一次测量中自动消除,进一步提高测量精度。

  PMS2280S只能输出正相电源,当测试中需要为待测件施加反向电压时,我们可以使用外接的开关电路切换正负极实现反向电压。PMS 2280S输出正负端均与地隔离,因此正负极反向连接就可以实现输出负电压的功能。外界MOSFET或继电器开关的通断可以由PMS2280S后面板的数字IO接口控制,通过指令设置高低电平即可控制开关的通断操作。开关的供电可由后面板的USB接口提供(如供电电流小于2mA,亦可使用数字IO口提供供电)。

  使用2280S 测量锂离子电池的电量

  随着电子产品功能的增强,电池容量也在不断增加,如何能准确了解电池容量成为电池测试的一项重要任务。电池电量的描述通常使用安时或瓦特时作为单位,表示从电池放空到充满的过程中进入电池的总电量。计算电池充电或放电电量,需要对电池的充放电电流或功率进行积分计算,其计算公式如下所示:

  电池总容量,其中t为充电(放电)时间,I为充电(放电)电流

  电池总容量, 其中I是采样电流值, ?t是采样间隔

  当使用测试仪表进行电量测试时,由于电流的采样点是离散的,我们将计算公式转化为:

  这里要求测量仪表能精确记录充电或放电电流,并保证较高的连续采样率,同时可以将整个充放电过程的全部数据完整记录下来,才能确保计算结果足够准确。

  PMS 2280S的数据记录功能可以提供最高3000次每秒的电压或电流采样率。并可以通过LAN接口将数据连续回传到电脑端。用户可以长时间对数据进行记录,并将所有数据导出到Excel表格中进行后续分析。下图是2280S为锂离子电池充电的电压电流曲线图,电池电压从11.8V充到12.6V,电流以2A开始充电,下降至20mA以下时充电结束。

  图2 2280S 电池充电曲线

  当进行安时计算时,只需将电池与电源相连接,设置好充电的截至电压(Vset),以及充电电流(Iset),此时电源将自动开始为电池充。初始阶段采用恒流充电(CC 模式),当电压上升到充电截至电压时,将自动转入恒压充电(CV 模式),直到电流减小到接近0为止。

  除了对电池进行充电测试外,PMS 2280S还可以为电池进行放电测试。放电时由于电压电流均不可控,电源将以最大能力吸收电流(约为-450mA),并对放电过程中的电压和电流值进行连续记录。

  充放电过程中的电压电流数据都可以通过电脑端进行连续记录,用户不需要编写任何软件。在电脑端的网页浏览器上输出电源的IP地址,选择屏幕左下角的Data logging功能后,使用仪表内置的网页界面就可以完成全部数据的记录。电池的充电或放电总量也会以毫安时的形式自动显示出来,如下图所示:

  图3 2280S data logging界面

2280S泰克公司电源测试

  使用2280S 测量超级电容的电容量

  超级电容在新能源行业有着非常广泛的应用。由于其具有高功率密度,寿命长内阻小,可快速充电等优点,被认为可以取代电池作为下一代储能器件。大功率超级电容已经被广泛使用在电动汽车,光伏发电,风电等行业,作为能量存储或缓冲,超级电容未来的发展前景非常广阔。

  图4 超级电容

  对于超级电容的使用者,在长期使用过程中,希望通过测量电容量,了解电容的老化情况,以确保系统性能,在老化严重前及时更换器件。

  准确测量电容量是一个相对复杂的操作,需要对兼容进行充电或放电,并根据充放电斜率进行计算。这需要使用者使用电源,电阻负载,数字万用表,以及其他数据采集设备进行测量。使用的测试公式是:C = I * (?T / ?V)。

  2280S的优势在于,使用一台设备,可以完成其中的绝大多数工作。2280S作为电源,除了输出功率之外,还具备一定的功率吸收功能,可以最高吸收400mA的电流,持续帮助电容放电,并记录放电时的电压电流数据。因此,常规容量的电容完全可以通过2280S的充放电操作,进行电容量测试

  我们以一块16.2V,58F的超级电容为例,使用2280S为其进行充放电测试。测试过程包括将电容从8.1V充电到16.2V,再放电恢复到8.1V的初始状态,计算并验证充电和放电过程下的的电容容量。整个过程中打开LXI网页界面,并执行data logging功能,实时采集电源输出电压和电流数据,并将最后的结果粘帖到Excel表格中。

  在Excel表格中根据电压电流数据绘图,可以得到下面的充放电过程图形。图中的左侧方框中记录了超级电容的充电过程(T1至T2),电源输出电流3.2A为电容恒流充电,电容电压逐渐升高直到达到16.2V为止。电容充满后进入放电流程(T3至T4),约以400mA放电,直到电流下降为8.1V结束。根据公式:

  C = I * (?T / ?V)

  可知充电过程的电容量C1 = 3.2 * (T2-T1($0.3939)) / (V2-V1);其中T1是起始充电时间,T2是电压充满的时刻,V2是最高点电压,对应时间点T2;V1是充电起始电压,对应时间点T1。

  放电过程的电容量C2 = 0.45 * (T4-T3) / (V3-V4);其中T3是起始放电时间,T4是放电结束时间,V3是起始放电电压,V4是终止放电电压。

  通过斜率可以计算出超级电容的容量值,在这个实验中,我们计算得到的电容容量值在充电过程中是61.3F,放电过程中是60.7F,与标称值基本一致。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

增强负载能力:在变压器容量不变的情况下,较小的阻抗能够使得变压器能够承受更大的负载,提高其负载能力。

关键字: 功放变压器 内阻 变压器

你了解DS1820工作原理嘛,今天就让我来带你深入探索数字温度传感器的科技奥秘。在科技飞速发展的今天,传感器作为获取物理世界信息的重要工具,已经广泛应用于各个领域。其中,DS1820作为一款数字温度传感器,以其独特的优势...

关键字: ds1820 数字温度传感器

在科技日新月异的今天,水质传感器作为一种重要的环境监测工具,已经广泛应用于环境保护、水资源管理、饮用水处理等多个领域。本文旨在深入解析水质传感器的类型、工作原理、应用及发展趋势,为读者揭示这一科技领域的魅力与前景。

关键字: 水质传感器 生物传感器

一直以来,涡街流量计都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来涡街流量计的相关介绍,详细内容请看下文。

关键字: 流量计 涡街流量计

钳形万用表是一种结合电流互感器和普通万用表功能于一体的便携式电工测量工具,主要用于非接触式测量交流电流,也可测量电压、电阻等多种电气参数。它的独特之处在于其钳口设计,使得用户无需断开电路就能方便快捷地测量线路中的电流值,...

关键字: 钳形万用表 电压测试

托盘天平是一种精密测量仪器,广泛应用于实验室、学校教育、工业生产和科研领域,主要用于测定物体的质量。正确使用托盘天平不仅可以确保测量数据的准确性,也是实验操作规范性的重要体现。以下是关于托盘天平(又称为双盘天平)的详细使...

关键字: 托盘天平 测量仪器

电桥法作为一种经典的电路测量技术,广泛应用于电阻、电容、电感等多种电子元件参数的精准测量中,尤其在电阻测量领域,它以其高精度、简便易行的特点受到工程师和技术人员的青睐。本文将详细介绍电桥法测电阻的工作原理、步骤、特点及应...

关键字: 电桥 电阻测试

综合测试仪(以下简称“综测仪”)作为一种集多种测试功能于一体的精密电子测量仪器,广泛应用于各个行业的研发、生产和维修环节,其强大的功能性使其成为现代科技领域的关键工具。本文旨在深入探讨综测仪的作用、功能及其在不同应用场景...

关键字: 综测仪 通信领域

随着科技的不断发展,测试工装作为电子产品生产过程中不可或缺的一环,其在确保产品质量和性能方面的作用日益凸显。本文将深入探讨测试工装的工作原理,分析其在科技领域的应用,并展望未来的发展趋势。

关键字: 测试工装 电子产品

超声雷达和激光雷达均属于先进的远程探测技术,尽管二者均依赖于发送信号至目标并分析反射回来的信息以获取距离、方位、速度等关键数据,但在物理机制、技术细节、应用领域以及优劣势上存在显著差异。

关键字: 超声雷达 激光雷达
关闭
关闭