当前位置:首页 > 测试测量 > 测试测量
[导读]   (一)晶体管材料与极性的判别   1.从晶体管的型号命名上识别其材料与极性 国产晶体管型号命名的第二部分用英文字母A“D表示晶体管的材料和极性。其中,“A”代表锗材料PNP型管,

  (一)晶体管材料与极性的判别

  1.从晶体管的型号命名上识别其材料与极性 国产晶体管型号命名的第二部分用英文字母A“D表示晶体管的材料和极性。其中,“A”代表锗材料PNP型管,“B”代表锗材料NPN型管,“C”代表硅材料PNP型管,“D”代表硅材料NPN型管。

  ***产晶体管型号命名的第三部分用字母A”D来表示晶体管的材料和类型(不代表极性)。其中,“A”、“B”为PNP型管,“C”、“D”为NPN型管。通常,“A”、“C”为高频管,“B”、“D”为低频管。

  欧洲产晶体管型号命名的第一部分用字母“A”和“B”表示晶体管的材料(不表示NPN或PNP型极性)。其中,“A”表示锗材料,“B”表示硅材料。

  2.从封装外形上识别晶体管的引脚 在使用权晶体管之前,首先要识别晶体管各引脚的极性。

  不同种类、不同型号、不同功能的晶体管,其引脚排列位置也不同。通过阅读上述“晶体管的封装外形”中的内容,可以快速识别也常用晶体管各引脚的极性。

  3.用万用表判别晶体管的极性与材料 对于型号标志不清或虽有型号但无法识别其引脚的晶体管,可以通过万用表测试来判断出该晶体管的极性、引脚及材料。

  对于一般小功率晶体管,可以用万用表R×100Ω档或R×1k档,用两表笔测量晶体管任意两个引脚间的正、反向电阻值。

  在测量中会发现:当黑表笔(或红表笔)接晶体管的某一引脚时,用红表笔(或黑表笔)去分别接触另外两个引脚,万用表上指示均为低阻值。此时,所测晶体管与黑表笔(或红表笔)连接的引脚便是基极B,而别外两个引脚为集电极C和发射极E。若基极接的是红表笔,则该管为PNP管;若基极接的是黑表笔,则该管国 NPN管。

  也可以先假定晶体管的任一个引脚为基极,与红表笔或黑表笔接触,再用另一表笔去分别接触另外两个引脚,若测出两个均较小的电阻值时,则固定不动的表笔所接的引脚便是基极B,而另外两个引脚为发射极E和集电极C。

  找到基极B后,再比较基极B与另外两个引脚之间正向电阻值的大小。通常,正向电阻值较大的电极为发射极E,正向电阻值较小的为集电极C。

  PNP型晶体管,可以将红表笔接基极B,用黑表笔分别接触另外两个引脚,会测出两个略有差异的电阻值。在阻值较小的一次测量中,黑表笔所接的引脚为集电极C;在阻值较大的一次测量中,黑表笔所接的引脚为发射极E。

  NPN型晶体管,可将黑表笔接基极B。用红表笔去分别接触另外两个引脚。在阻值较小的一次测量中,红表笔所接的引脚为集电极C;在阻值较大一次测量中,红表笔所接的引脚为发射极E。

  通过测量晶体管PN结的正、反向电阻值,还可判断出晶体管的材料(区分出是硅管还是锗管)及好坏。一般锗管PN结(B、E极之间或B、C极之间)的正向电阻值为200“500Ω,反向电阻值大于100kΩ;硅管PN结的正向电阻值为3”15kΩ,反向电阻值大于500kΩ。若测得晶体管某个PN结的正、反向电阻值均为0或均为无穷大,则可判断该管已击穿或开路损坏。

  (二)晶体管性能的检测

  1.反向击穿电流的检测

  普通晶体管的反向击穿电流(也称反向漏电流或穿透电流),可通过测量晶体管发射极E与集电极C之间的电阻值来估测。测量时,将万用表置于R×1k档, NPN型管的集电极C接黑表笔,发射极E接红表笔;PNP管的集电极C接红表笔,发射极E接黑表笔。

  正常时,锗材料的小功率晶体管和中功率晶体管的电阻值一般大于10Kω(用R×100档测,电阻值大于2kΩ),锗大功率晶体管的电阻值为1.5kΩ(用 R×10档测)以上。硅材料晶体管的电阻值应大于100kΩ(用R×10k档测),实测值一般为500kΩ以上。

  若测得晶体管C、E极之间的电阻值偏小,则说明该晶体管的漏电流较大;若测得C、E极之间的电阻值接近0,则说明其C、E极间已击穿损坏。若晶体管C、E极之间的电阻值随着管壳温度的增高而变小许多,则说明该管的热稳定性不良。

  也可以用晶体管直流参数测试表的ICEO档来测量晶体管的反向击穿电流。测试时,先将hFE/ICEO选择开关置于ICEO档,选择晶体管的极性,将被测晶体管的三个引脚插个测试孔,然后按下ICEO键,从表中读出反向击穿电流值即可。

  2.放大能力的检测

  晶体管的放大能力可以用万用表的hFE档测量。测量时,应先将万用表置于ADJ档进行调零后,再拨至hFE档,将被测晶体管的C、B、E三个引脚分别插入相应的测试插孔中(采用TO-3封装的大功率晶体管,可将其3个电极接出3根引线后,再分别与三个插孔相接),万用表即会指示出该管的放大倍数。

  若万用表无hFE档,则也可使用万用表的R×1k档来估测晶体管放大能力。测量PNP管时,应将万用表的黑表笔接晶体管的发射极E,红表笔接晶体管的集电极C,再在晶体管的集电结(B、C极之间)上并接1只电阻(硅管为100kΩ锗管为20 kΩ),然后观察万用表的阻值变化情况。若万用表指针摆动幅度较大,则说明晶体管的放大能力较强。若万用表指针不变或摆动幅较小,则说明晶体管无放大能力或放大能力较差。

  测量NPN管时,应将万用表的黑表笔接晶体管的集电极C,红表笔接晶体管的发射极E,在集电结上并接1只电阻,然后观察万用表的阻值变化情况。万用表指针摆动幅度越大,说明晶体管的放大能力越强。

  也可以用晶体管直流参数测试表的hFE/测试功能来测量放大能力。测量时,先将测试表的hFE/ICEO档置于hFE–100档或hFE–300档,选择晶体管的极性,将晶体管插入测试孔后,按动相应的hFE键,再从表中读出hFE值即可。

  3.反向击穿电压的检测

  晶体管的反向击穿电压可使用晶体管直流参数测试表的V(BR)测试功能来测量。测量时,先选择被测晶体管的极性,然后将晶体管插入测试孔,按动相应的V(BR)键,再从表中读出反向击穿电压值。

  对于反向击穿电压低于50V的晶体管,也可用图5-58中所示的电路进行测试。将待测晶体管VT的集电极C、发射极E与测试电路的A端、B端相连(PNP 管的E极接A点,C极接B点;NPN管的E有接B点,C极接A点)后,调节电源电压,当发光二极管LED点亮时,A、B两端之间的电压值即是晶体管的反向击穿电压。

  (三)特殊晶体管的检测

  1.带阻尼行输出管的检测

  用万用表R×1档,测量发射结(基极B与发射极E之间)的正、反向电阻值。正常的行输出管,其发射结的正、反向电阻值均较小,只有20“50Ω。

  用万用表R×1k档,测量行输出管集电结(基极B与集电极C之间)的正、反向电阻值。正常时,正向电阻值(黑表笔接基极B,红表笔接集电极C)为 3”10kΩ,反向电阻值为无穷大。若测得正、反向电阻值均为0或均为无穷大,则说明该管的集电结已击穿损坏或开路损坏。

  用万用表R×1k档,测量行输出管C、E极内部阻尼二极管的正、反向电阻值,正常时正向电阻值较小(6“7 kΩ),反向电阻值为无穷大,若测得C、E极之间的正反向电阻值均很小,则是行输出管C、E极之间短路或阻尼二极管击穿损坏。若测得C、E极之间的正、反向电阻值均为无穷大,则是阻尼二极管开路损坏。

  带阻尼行输出管的反向击穿电压可以用晶体管直流参数测试表测量,其方法与普通晶体管相同。

  带阻尼行输出管的放大能力(交流电流放大系数β值)不能用万用表的hFE档直接测量,因为其内部有阻尼二极管和保护电阻器。测量时可在行输出管的集电极C 与基极B之间并接1只30 kΩ的电位器,然后再将行输出管各电极与hFE插孔连接。适当调节电位器的电阻值,并从万用表上读出β值。

  2.带阻晶体管的检测

  因带阻晶体管内部含有1只或2只电阻器,故检测的方法与普通晶体管略有不同。检测之前应先了解管内电阻器的阻值。

  测量时,将万用表置于R×1k档,测量带阻晶体管集电极C与发射极E之间的电阻值(测NPN管时,应将黑表笔接C极,红表笔接E极;测PNP管时,应将红表笔接C极,黑表笔接E极),正常时,阻值应为无穷大,且在测量的同时,若将带阻晶体管的基极B与集电极C之间短路后,则应有小于50kΩ的电阻值。否则,可确定为晶体管不良。

  也可以用测量带阻晶体管BE极、CB极及CE极之间正、反向电阻值的方法(应考虑到内含电阻器对各极间正、反向电阻值的影响)来估测晶体管是否损坏。

  3.光敏三极管的检测

  光敏三极管只有集电极C和发射极E两个引脚,基极B为受窗口。通常,较长(或靠近管键的一端)的引脚为E极,较短的引脚的C极。达林顿型光敏三极管封装缺圆的一侧为C极。

  检测时,先测量光敏三极管的暗电阻:将光敏三极管的受光窗口用黑纸或黑布遮住,再将万用表置于R×1k档。红表笔和黑表笔分别接光敏三极管的两个引脚。正常时,正、反向电阻均为无穷大。若测出一定阻值或阻值接近0,则说明该光敏三极管已漏电或已击穿短路。

  测量光敏三极管的亮电阻:在暗电阻测量状态下,若将遮挡受光窗口的黑纸或黑布移开,将受光窗口靠近光源,正常时应有15”30kΩ的电阻值。则说明光敏三极管已开路损坏或灵敏度偏低。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。

关键字: 抗饱和晶体管 晶体管 半导体器件

【2024年4月10日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出了业界首款-48 V宽输入电压数字热插拔控制器XDP700-002,扩展了其XDP™数字功率保护控制器系列...

关键字: 控制器 晶体管 5G

恒流源电路作为电子技术中的一个重要组成部分,其稳定性和可靠性对电路的性能和设备的运行具有至关重要的作用。随着科技的不断发展,恒流源电路的形式和应用领域也在不断拓展和深化。本文将详细探讨恒流源电路的几种主要形式及其主要应用...

关键字: 恒流源电路 电子技术 晶体管

随着信息技术的飞速发展,数字电路已成为现代电子设备不可或缺的核心组成部分。在数字电路中,数字晶体管作为一种重要的开关元件,发挥着至关重要的作用。本文将详细探讨数字晶体管的基本概念、工作原理、主要类型、应用领域以及未来发展...

关键字: 数字电路 晶体管 开关元件

SPM31 智能功率模块 (IPM) 用于三相变频驱动应用,能实现更高能效和更佳性能

关键字: 功率模块 IGBT 晶体管

【2024年1月25日,德国慕尼黑和中国深圳讯】英飞凌科技股份公司(FSE代码:IFX /OTCQX代码:IFNNY)近日宣布其与全球充电技术领域的领导者安克创新(Anker Innovations) 在深圳联合成立创新...

关键字: MOSFET 氮化镓 晶体管

IGBT模块在电力电子领域中扮演着重要的角色,它是一种基于绝缘栅双极晶体管(Insulated Gate Bipolar Transistor)的功率模块。IGBT模块的作用是将电能进行转换和控制,广泛应用于电机驱动、电...

关键字: IGBT模块 电力电子 晶体管

业内消息,近日台积电在IEDM 2023会议上制定了提供包含1万亿个晶体管的芯片封装路线,来自单个芯片封装上的3D封装小芯片集合,与此同时台积电也在开发单个芯片2000亿晶体管,该战略和英特尔类似。

关键字: 台积电 1nm 晶体管 芯片封装

毋庸置疑的是,与“摩尔定律”紧密相关单芯片晶体管数量和工艺几何尺寸演进正在迎来一个“奇点时刻”。与此同时,终端应用的高算力需求依然在不断推高单芯片Die尺寸,在光罩墙的物理性制约之下,众多芯片设计厂商在芯片工艺与良率的流...

关键字: 晶体管 芯片设计 算力

在今年9月,英特尔宣布率先推出用于下一代先进封装的玻璃基板,并计划在未来几年内向市场提供完整的解决方案,从而使单个封装内的晶体管数量不断增加,继续推动摩尔定律,满足以数据为中心的应用的算力需求。

关键字: 玻璃基板 晶体管 算力
关闭
关闭