当前位置:首页 > 测试测量 > 测试测量
[导读] 在WLAN、卫星通信、光通信领域,可能需要对非常高带宽的信号(>500MHz)进行性能测试和解调分析,这对于测量仪器的带宽和通道数要求非常高。比如在光纤骨干传输网上,已经实现了单波长100Gbps的信号传

在WLAN、卫星通信、光通信领域,可能需要对非常高带宽的信号(>500MHz)进行性能测试和解调分析,这对于测量仪器的带宽和通道数要求非常高。比如在光纤骨干传输网上,已经实现了单波长100Gbps的信号传输,其采用的技术就是把2路25Gbps的信号通过QPSK的调制方式调制到激光器的一个偏振态,然后把另2路25Gbps的信号通过同样的方式调制到激光器一个偏振态上,然后把两个偏振态的信号合成在一起实现100Gbps的信号传输。而在下一代200Gbps或者400Gbps的技术研发中,可能会采用更高的波特率以及更高阶的调制如16QAM、64QAM甚至OFDM等技术,这些都对测量仪器的带宽和性能提出了非常高的要求。

如下图所示是一种进行100G/400G光相干通信测试的分析仪表:仪器下半部分是一个相干光通信的解调器,用于把输入信号的2个偏振态下共4路I/Q信号分解出来并转换成电信号输出,每路最高支持的信号波特率可达126Gbaud;而上半部分就是一台高带宽的Z系列示波器,单台示波器就可以实现4路33GHz的测量带宽或者2路63GHz的测量带宽;示波器里运行矢量信号分析软件,可以完成信号的偏振对齐、色散补偿以及4路I/Q信号的解调和同时显示等。

下图中还显示了用示波器做超宽带信号解调分析的结果,被测信号是由超宽带任意波发生器发出的32Gbaud的16QAM调制信号。由于16QAM调制格式下每个符号可以传输4个bit的有效数据,所以实际的数据传输速率达到128Gbps。通过宽带的频响修正和预失真补偿,实现了高达20dB以上的信噪比以及<4%的EVM(矢量调制误差)指标。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

慧聪物联资讯10月12日,小米宣布发布消息:支持小米UWB技术的手机可以实现对智能设备的厘米级定位,手机可直接控制指向的任意智能设备,角度测量精度可达±3°,如同高精版的“室内GPS”。去年9月,苹果发布iPhone11...

关键字: 物联网 超宽带通信

在卫星通信或者导航等领域,需要测试其射频输出(可能是射频或者Ku/Ka波段信号)相对于内部定时信号(1pps或100pps信号)的绝对时延并进行修正。这就需要使用至少2通道的宽带示波器同时捕获定时...

关键字: 射频信号测量 示波器 调制器 时延测试

除了在示波器里直接对雷达脉冲的基本参数进行测量,也可以借助功能更加强大的矢量信号分析软件。下图是用Keysight公司的89601B矢量信号分析软件结合示波器对超宽带的Chirp雷达信号做解调分析...

关键字: 射频信号测量 雷达脉冲 参数统计

对于雷达等脉冲调制信号来说,对于脉冲信号其宽度、上升时间、占空比、重复频率等都是非常关键的时域参数。按照IEEE Std 181规范的要求,一些主要的脉冲参数的定义如下图所示。 当...

关键字: 射频信号测量 雷达脉冲信号

正是由于芯片、材料和工艺技术带来的示波器带宽和采样率的快速提升,使得宽带实时示波器开始在射频信号的测试中发挥关键的作用。后续我们将介绍一些用实时示波器做简单射频、雷达脉冲、调频信号、调制

关键字: 射频信号 射频信号测量 时频域

要实现射频信号的直接测量,首先得益于由于材料和芯片技术发展带来的实时示波器性能的提升。 传统的示波器由于带宽较低,无法直接捕获高频的射频信号,所以在射频微波领域的应用仅限于中频或控制信

关键字: 射频信号测量 示波器技术

前面推出了《数字工程师需要掌握的射频知识》连载后,反响强烈。有些工程师朋友联系我说,除了数字工程师要用到射频仪器外,有些射频工程师也会用到示波器做射频信号测试,但是不清楚精度如何,以及和

关键字: 示波器 射频信号测量

摘要:超宽带UWB(Ultra-Wide Bandwidth)脉冲通信(Impulse Radio)技术与其它通信技术有很大不同,它具有信号功率谱密度低、不易检测、系统复杂度低等优点,尤其适用于室内等密集多径场所的高速...

关键字: 通信技术 超宽带通信 功率谱密度 通信系统

为了消除不对称二元相移键控(ABSK)数字冲击滤波器解调输出的起始振荡,提升传输效率,节省发射功率,提出一种消除数字冲击滤波器起始振荡的方法,该方法通过预先发送训练符号,使得冲击滤波器的状态参数达到稳定,从而直接进入稳定...

关键字: ABS 信号解调 振荡 BSP

本文介绍了光纤光栅传感系统的构成,分析了光纤光栅传感系统所用的3种不同的光源LED,LD和掺铒光源的性能,阐述了光纤光栅传感器的工作原理和各种不同的温度和应力的区分测量方法,描述了滤波法、干涉法、可调窄带光

关键字: 传感系统 光纤光栅传感 光栅传感器 信号解调
关闭
关闭