当前位置:首页 > 测试测量 > 测试测量
[导读] 引言 处理必要的大电流和脉冲电压。这样的开关必需能够连接各种拓扑结构的电路,具体取决于被测电源的类型及其应用。 有些情况下,可以采用商业化的测试负载或开发一套测试流程。如果开关的一侧连

引言 处理必要的大电流和脉冲电压。这样的开关必需能够连接各种拓扑结构的电路,具体取决于被测电源的类型及其应用。

有些情况下,可以采用商业化的测试负载或开发一套测试流程。如果开关的一侧连接在电源的公共端,测试过程将相对简单。否则,就必须设计开关驱动器,使设计变得复杂。一个足够灵活、能够支持电源瞬态故障测试的开关将是一个非常有用的测试工具。综上所述,可以归纳出对这种开关的要求,包括最大额定电压和额定电流,用来测试目前市场上多数中等功率的电源。

这种开关应该能够处理100A的电流,承受至少75V的开路电压。开关需要在两个方向满足电流、电压的要求,因为一些测试会产生电流振铃,有些电源电路需要双极性输出。开关的通、断速度应该保持在几十纳秒以内,以便观察电路的瞬态响应。开关的串联电阻必须足够低,串联电感也必须非常低,这意味着需要采用紧凑的物理结构和非常短的电流路径。此外,还要求开关提供电气隔离,具有非常低的输出对地电容。总之,对于开关的基本要求是当开关连接到电路时不会电路的性能和响应。

电路说明 图1所示开关设计满足上述多项指标的要求,它通过一个数字隔离耦合器实现,该耦合器的端到端电容小于1pf。总传输延时为80ns,输出上升时间接近40ns。输出级由两个低RDSON的MOSFET构成,能够处理双极性200A、75V的电源瞬变。

开关元件(两个反向连接的输出MOSFET)具有7mΩ导通电阻和25nH导通电感。导通状态下,对于双向电流(包括零点)表现为线性电阻,类似于导线连接,不会引入谐波失真。


图1. 该电路利用5V逻辑信号控制独立的(隔离)功率开关Q1–Q2,能够处理200A、75V的脉冲信号。

对于吸收电流大于50A的小阻值负载,开关上升时间(定义为瞬间导通)由导通电感决定。电流较低时,上升时间小于40ns,下降时间(瞬间关断)主要由负载阻抗决定。

电路隔离侧(开关)的电源由一组3节3V锂离子原电池串联而成(CR2025锂锰电池)。对于几kHz的开关频率,标称值为170mAh的这种电池能够连续使用一个多月。对于常见的测试平台,电池的使用寿命大概为3个月(左侧始终连接)。

输入为0V至5V的数字信号,只要求上升沿和下降沿时间小于20ns,最小脉宽为50ns (通或断)。传导电流小于18A时,开关处于不确定的通或断状态。

图1中,IC1和IC2构成边沿检测电路,在T1原边的一端施加窄脉冲,极性取决于输入沿,另一侧保持低电平。T1副边连接了一个同相逻辑缓冲器(输入到输出),由IC3双通道低边功率MOSFET驱动器中的一个通道构成。这个缓冲器如同一个双稳态电路(即触发器),当T1原边作用正脉冲时置位,作用负脉冲时复位。双稳态电路输出相当于电路输入(作用在边沿检测电路的数字输入)的拷贝。

IC3的另一半和IC4的两路驱动器并联,其输入连接至双稳态输出,利用并联输出驱动两个反向连接的低RDSON MOSFET (IRFB3077)的栅极,两个MOSFET的漏极接外部电源,两个栅极和两个源极分别接在一起。三个驱动器并联后可有效提高功率MOSFET的开关速度,因为IC2–IC3均分电流,每个驱动器可提供4A的峰值电流,并联后总电流可以达到12A,MOSFET源极接电池负极。

MAX5048的输入逻辑简化了边沿检测电路的设计,MAX5054的低静态电流有助于延长电池的使用寿命。因此,本设计中使用了类似但不相同的IC,分别用于低边(控制和隔离,IC1、IC2)和高边(功率驱动,IC3、IC4)驱动。

图2给出了电源开关的等效电路,包括主要的寄生元件。对于整个供电电路,开关能够承受的连续功率取决于散热器。散热器会显著增大寄生输出电容,本设计中没有包括散热器。处理200A脉冲电流时需要一些补充条件,必须将脉冲宽度限制在8ms以内,开关占空比限制在0.5%以内。对于80A的瞬态信号,脉冲时间不受限制,持续时间较长(达到50ms),但占空比不得超过3%。


图2. 该功率开关电路是图1电路的等效架构,包含了主要寄生元件。

室温下切换一个未经箝位的电感时,电路能够吸收的能量是280mJ (单个脉冲,不重复出现)或200mJ (最大占空比为1%的脉冲)。

耦合变压器设计要求小尺寸、低绕线电容:原边一匝、副边两匝,绕制在Fair-Rite 7.5 x 7.5m的铁氧体磁珠。变压器结构决定了开关负载和开关控制电路两侧的最大压差。使用普通的漆包线绝缘架构时,可以提供1kV隔离,如果使用聚四氟乙烯或质量更好的绝缘材料,则可提供1kV以上的隔离。对于要求更高隔离电压的设计,还需考虑封装。

T1的铁氧体磁芯为导体,不能在同一时刻连接到开关两侧,开关内部没有闭锁保护,操作之前必须检验锂电池的状态。上电后没有电路能够保证开关处于确定的状态(通或断)。因此,在接通其它电源之前必须先打开开关电源。开关状态由最先作用到输入端的瞬态决定,在给其它部分供电时至少使开关通、断一次。

测试电路 图3–图5中顶部波形为数字输入,底部波形是通过一个0.25Ω电阻负载观察到的5µs脉冲波形,负载通过开关接50V电源。因为电压波形作用在一个低电感薄膜电阻,可近似表示开关的电流波形。图3所示近似200A的脉冲波形给出了过冲和上升时间(60ns至80ns),上升时间受高边电流通道寄生电感、电容的影响。图4给出了该脉冲的上升时间和导通延时;图5给出了下降时间和断开时的传输延时。图6–图8给出了同样的波形,负载为5Ω,10A脉冲,电源电压为50V。上升时延接近于MOSFET固有的30ns至40ns的上升时延,受封装和源阻抗的限制。


图3. 图1测试结果,(1) 控制信号,(2) 在0.25Ω电阻两端测试的5µs脉冲,电源电压为50V。


图4. 基于图2的上升时间和导通传输延时,扫描速率为40ns/cm。


图5. 基于图2的下降时间和关断传输延时,扫描速率为40ns/cm。


图6. 图1测试结果,(1) 控制信号,(2) 在5Ω电阻两端测试的5µs脉冲,电源电压为50V。


图7. 基于图6的上升时间和导通传输延时,扫描速率为40ns/cm。


图8. 基于图6的下降时间和关断传输延时,扫描速率为40ns/cm。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在我担任现场应用工程师的这么多年中,我看到了相当多的电源设计。在许多情况下,这些设计可以毫无问题地工作。有时,我发现在将产品投入生产之前通过一些额外的工程工作可以避免的问题。系统设计人员常常在使用电源电路时没有彻底确保其...

关键字: DCDC 电源测试

当我们使用有源负载测试电路来确保微处理器或其他数字负载的电源提供 100A 瞬态电流。这种有源负载可以为电源提供直流负载,并且可以在直流电平之间快速切换。这些瞬态负载模拟微处理器中的快速逻辑切换。

关键字: 有源负载 电源测试

先进的测试设备,能帮助研发获得更精准的测试参数,能帮助产线更高效率的完成生产任务,ITECH为研发、工业制造、高校、认证检测等不同领域的客户,提供完善的功率电子测试方案。

关键字: itech 新基建 电源测试

产品的正常工作离不开电源,在全球节能环保和智能互联终端花样翻新的大环境下,节能、高频、高效、微型、智能化是电源行业未来的发展趋势。新低能耗器件的广泛应用,PMIC 设计优化、第三代半导体材料 SiC/GaN MOSFET...

关键字: pmic 电源测试 电源设计

  1、测试基本原则  以标准(IEC标准和其他国际标准、国家标准、部颁标准)、开发规格书、企业标准、测试规范为依据,以测试数据为准绳,站在用户的角度上对电源系统进

关键字: 基础知识 电源技术解析 电源测试

在做电源的响应速度测试时,负载处于动态功能进行测试。但是负载的动态参数中的上升斜率和下降斜率是怎么来的呢?首先,斜率本身定义为曲线的切线。也就是说,是指负载两个状

关键字: 电源技术解析 电源测试 动态斜率

  1 输入电压范围和过/欠压点,以及半载转换点  测试说明:  交流输入(单相)电话范围:额定值的85%~110%范围内应能正常工作;交流380V输入(三相)变化范围:额

关键字: 功能测试 电源技术解析 电源测试

电源作为电子产品或者电池的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要。如过压、过流、过温保护等,本次以恒压源的过流保护为例进行介绍。首

关键字: 电源技术解析 电源测试 过载测试

对于直流电源来说,评价直流的纯净度,所以就有了纹波测试。电压的波动一般分为两种:纹波和噪声,一般来说把低于500KHz频率的波动称为纹波,高于20MHz频率的一般不测试(属

关键字: 电源技术解析 电源测试 纹波测试

  1 辅助电源测试  测试说明:  电源中辅助电源有重要意义,电源模块的正常工作靠辅助电源来保障,辅助电源工作要比主电路要求更可靠,因为即使在输入电压超限的条件

关键字: 电源技术解析 电源测试 白盒测试
关闭
关闭