当前位置:首页 > 测试测量 > 测试测量
[导读] 由随机小电压构成的噪声可能很难测量,实验室仪器本身的噪声使测量问题进一步复杂化。测量噪声时,常常要使用专门的技 术。例如,放大器通常配置为高闭环增益,以使放大输入噪声便于测量。但是,低固定

由随机小电压构成的噪声可能很难测量,实验室仪器本身的噪声使测量问题进一步复杂化。测量噪声时,常常要使用专门的技 术。例如,放大器通常配置为高闭环增益,以使放大输入噪声便于测量。但是,低固定增益差分放大器的噪声测量面临着更大的问题,它集成反馈和增益电阻,不方 便使用高增益配置。此外,为了与频谱分析仪接口,需要进行差分单端转换。第二级放大器可以提供增益并执行差分单端转换,巧妙地解决上述两个问题。

图1显示可选增益(1、2或3)差分放大器ADA4950-1后接低噪声、低失真运算放大器AD8099。 AD8099将差分输出转换为单端信号,增益设为10。与ADA4950-1相比,AD8099的1nV/√Hz等效输入电压噪声可忽略不计。 ADA4950-1的输出放大10倍,其噪声也成比例放大。利用0.5pF补偿电容和10倍增益,AD8099具有足够的带宽来测量ADA4950-1的 噪声;在系统的频率响应开始滚降之前,工作频率最高可达10 MHz。

图1. 利用低噪声、低失真运算放大器A D8099测量可选增益差分放大器ADA4950-1的噪声

AD8099的输出电压为: (1)

当输入接地时,测得的AD8099噪声贡献视为测量系统的噪底,然后测量包括ADA4950-1的总输出噪声,ADA4950-1的噪声即为RSS(和的平方根)方法,用总噪声减去AD8099的噪声贡献。如式2所示;其中Vn1为ADA4950-1的输出噪声,Vn2为AD8099的输出噪声。

总输出噪声为: (2)

为了精确测量系统噪声,还采用了其它几项技术:

  • 测量AD8099的噪声时,其输入通过SMA连接器接地,SMA连接器的芯线对连接器的接地引脚短路。此外,SMA连接器焊在一起,直接在连接器上形成共用接地连接,而不是通过电路板。
  • AD8099和ADA4950-1使用模拟控制电源。与数字控制电源相比,模拟控制电源能更好地抑制60Hz电力线耦合的噪声和谐波。
  • 所有邻近仪器均关闭,除非测量需要使用。这可以最大程度减少由这些仪器控制器数字电路而产生的振荡,这些振荡可以通过空气耦合至放大器。出于同样的原因,使用4英尺电缆将电路板连接到频谱分析仪,频谱分析仪会拾取显示器的刷新频率,从而影响AD8099的输出。
  • 为使AD8099的噪声贡献较小,使用低值电阻(RF = 250 ?; RG = 25 ?)配置其增益。较低的值会引起AD8099振荡。当用短电缆将ADA4950-1与AD8099相连时,在250 MHz时可观察到振荡。当使用1英尺电缆时,振荡消失。

AD8099本身的噪声贡献非常小:

(3)

其中vn为输入电压噪声,ni+和ni-为AD8099的输入电流噪声。

因为需要一个大反馈电阻来放大该噪声,但内部反馈电阻值无法改变,所以不可能测量ADA4950-1的电流噪声。

图2所示的是测量结果,测量100 kHz及以下的噪声使用的是Stanford Research Systems SR785,测量100 kHz以上的噪声使用的是Agilent E4440 PSA频谱分析仪。

图2. 测试结果

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为增进大家对放大器的认识,本文将对放大器以及差分放大器与单端放大器的区别予以介绍。

关键字: 放大器 指数 差分放大器 单端放大器

场效应管(Field-Effect Transistor,FET)是一种电压控制型半导体器件,具有输入阻抗高、噪声低、动态范围宽等优点。在应用中,场效应管的漏集(Drain)和源集(Source)是两个重要的电极,它们的...

关键字: 场效应管 差分放大器

差分放大器(英语:differential amplifier、difference amplifier,也称:差动放大器、差放),是一种将两个输入端电压的差以一固定增益放大的电子放大器。

关键字: 差分放大器 固定增益 放大器

差分放大器是能把两个输入电压的差值加以放大的电路。能把两个输入电压的差值加以放大的电路,也称差动放大器。这是一种零点漂移很小的直接耦合放大器,常用于直流放大。

关键字: 差分放大器 零点漂移 直流放大

无论温度怎么变化始终UCQ1=UCQ2,电路以两只管子集电极电位差作为输出,就克服了温漂 当u11=u12(共模信号)T1管和T2管所产生的电流变化相等;因此集电极电位的变化也相等。

关键字: 差分放大器 系统设计 电极电位

在绝大多数的基本电路中,运算放大器均用作电压放大器,可大致分为同相放大器和反相放大器。电压跟随器(亦简称为“缓冲器”)是一种常用的同相放大器。运算放大器也可用作差分放大器、积分电路等。

关键字: 运算放大器 差分放大器 积分电路

由于其输入配置,所有运算放大器都是“差分放大器”。但是,通过将一个电压信号连接到一个输入端子上并将另一电压信号连接到另一个输入端子上,所得输出电压将与V 1和V 2的两个输入电压信号之间的“差”成比例。

关键字: 差分放大器 电压信号 单端输出

跨阻抗放大器(TIA) 最常使用运算放大器(op amps) 构建。而且,越来越多的(如果不是全部的话)模数转换器(ADC) 是全差分系统,需要具有单端差分机制。TIA由于具有高带宽的优点,一般用于高速电路,如光电传输通...

关键字: 跨阻抗放大器(TIA) 差分放大器

制造商为需要差分驱动电压的设计制造全差分放大器。示例应用包括高速 ADC 输入、高速模拟信号传输、高频噪声抑制和低失真应用。大多数全差分放大器应用都是高频应用;全差分放大器的增益带宽在数千兆赫兹范围内。因此,全差分放大器...

关键字: 差分驱动电压 差分放大器

许多信号路径是直流 (DC) 耦合的,当信号路径的不同部分需要不同的工作条件时,这可能会带来挑战。信号路径的许多部分都以地为参考,其中信号以大约 0V 的平均值或中间值变化。

关键字: 差分放大器 电平转换
关闭
关闭