首页 > 嵌入式硬件 > 总线与接口

对于需要经常进行数据流传输的系统数据,SPI是首选,因为它拥有较快的时钟速率,速率可从几兆赫兹到几十兆赫兹。然而,对于系统管理活动,如读取温度传感器的读数和查询多个从器件的状态,或者需要多个主器件共存于同一系统总线上(系统冗余常会要求这一点),或者面向低功耗应用,这时I2C 或 SMBus将是首选接口。

本文引用地址: http://www.21ic.com/embed/hardware/can/201801/50490.html

 

图1:数字温度传感器简化框图

下面几部分将介绍每种串行总线及其优缺点。

1. SPI

SPI 是一种四线制串行总线接口,为主/从结构,四条导线分别为串行时钟(SCLK)、主出从入(MOSI)、主入从出(MISO)和从选(SS)信号。主器件为时钟提供者,可发起读从器件或写从器件操作。这时主器件将与一个从器件进行对话。当总线上存在多个从器件时,要发起一次传输,主器件将把该从器件选择线拉低,然后分别通过 MOSI 和 MISO 线启动数据发送或接收。

SPI 时钟速度很快,范围可从几兆赫兹到几十兆赫兹,且没有系统开销。SPI 在系统管理方面的缺点是缺乏流控机制,无论主器件还是从器件均不对消息进行确认,主器件无法知道从器件是否繁忙。因此,必须设计聪明的软件机制来处理确认问题。同时,SPI 也没有多主器件协议,必须采用很复杂的软件和外部逻辑来实现多主器件架构。每个从器件需要一个单独的从选择信号。总信号数最终为 n+3 个,其中 n 是总线上从器件的数量。因此,导线的数量将随增加的从器件的数量按比例增长。同样,在 SPI 总线上添加新的从器件也不方便。对于额外添加的每个从器件,都需要一条新的从器件选择线或解码逻辑。图 2 显示了典型的 SPI 读/写周期。在地址或命令字节后面跟有一个读/写位。数据通过 MOSI 信号写入从器件,通过 MISO 信号自从器件中读出。图 3显示了 I2C总线/SMBus以及SPI的系统框图。

 

图2:SPI 典型读/写周期

 

图3:(a)I2C总线/SMBus系统接口;(b)SPI 系统接口

2. I2C总线

I2C 是一种二线制串行总线接口,工作在主/从模式。二线通信信号分别为开漏 SCL 和 SDA 串行时钟和串行数据。主器件为时钟源。数据传输是双向的,其方向取决于读/写位的状态。每个从器件拥有一个唯一的 7 或 10 位地址。主器件通过一个起始位发起一次传输,通过一个停止位终止一次传输。起始位之后为唯一的从器件地址,再后为读/写位。

I2C总线速度为从0Hz到3.4MHz。它没有SPI 那样快,但对于系统管理器件如温度传感器来说则非常理想。I2C 存在系统开销,这些开销包括起始位/停止位、确认位和从地址位,但它因此拥有流控机制。主器件在完成接收来自从器件的数据时总是发送一个确认位,除非其准备终止传输。从器件在其接收到来自主器件的命令或数据时总是发送一个确认位。当从器件未准备好时,它可以保持或延展时钟,直到其再次准备好响应。

I2C允许多个主器件工作在同一总线上。多个主器件可以轻松同步其时钟,因此所有主器件均采用同一时钟进行传输。多个主器件可以通过数据仲裁检测哪一个主器件正在使用总线,从而避免数据破坏。由于 I2C总线只有两条导线,因此新从器件只需接入总线即可,而无需附加逻辑。

3. SMBus

SMBus是一种二线制串行总线,1996年第一版规范开始商用。它大部分基于I2C总线规范。和 I2C一样,SMBus不需增加额外引脚,创建该总线主要是为了增加新的功能特性,但只工作在100kHz且专门面向智能电池管理应用。它工作在主/从模式:主器件提供时钟,在其发起一次传输时提供一个起始位,在其终止一次传输时提供一个停止位;从器件拥有一个唯一的7或10位从器件地址。

SMBus与I2C总线之间在时序特性上存在一些差别。首先,SMBus需要一定数据保持时间,而 I2C总线则是从内部延长数据保持时间。SMBus具有超时功能,因此当SCL太低而超过35 ms时,从器件将复位正在进行的通信。相反,I2C采用硬件复位。SMBus具有一种警报响应地址(ARA),因此当从器件产生一个中断时,它不会马上清除中断,而是一直保持到其收到一个由主器件发送的含有其地址的ARA为止。SMBus只工作在从10kHz到最高100kHz。最低工作频率10kHz是由SMBus超时功能决定的。

总结

SPI有较快的速度,但是只能单主多从,管理线比较复杂。

I2C等速度比较慢,数据比较臃余,但是主从管理好,也省电省控制管脚。

换一批

延伸阅读

[行业资讯] 预计2018年我国传感器市场规模将达到1472亿元

预计2018年我国传感器市场规模将达到1472亿元

目前我国已有2000多家从事传感器的生产和研发的企业,其中从事微系统研制、生产的有50多家。同时,传感器越来越多地被应用到社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、......

关键字:传感器 物联网 车用传感器

[行业资讯] 徐州联合武岳峰资本成立规模30亿传感器产业投资基金

徐州联合武岳峰资本成立规模30亿传感器产业投资基金

在16日于徐州举行的2018国际(徐州)传感器与物联网产业峰会上,徐州市宣布联合武岳峰资本,推出总规模30亿元的传感器产业投资基金。 ......

关键字:传感器 徐州 系统集成

[行业资讯] 可见不可见的石墨烯可以制备各种非硅半导体材料?

可见不可见的石墨烯可以制备各种非硅半导体材料?

目前,绝大多数的计算机设备均是由硅材料制备而来。硅元素是地球上既氧元素之后,储量第二丰富的元素。它以各种不同的形式,广泛存在于岩石、砂砾以及尘土之中。硅虽然不是最好的半导体材料,但它是迄今最容易获取的半导体材料。由此,硅材料在电子器件领域占......

关键字:硅元素 传感器 半导体

[行业资讯] 浙江芯动科技有限公司MEMS传感器首批样品正式诞生

浙江芯动科技有限公司MEMS传感器首批样品正式诞生

日前,在浙江芯动科技有限公司的MEMS传感器生产线上,首批样品正式诞生。这家企业试生产出来的9个微型加速度计、压力传感器样品经过客户认可后,将代替进口,为惯性导航、汽车电子产品装上“中国芯”。这家芯片制造企业的投产,与“纳杰微电子”、“恩湃......

关键字:传感器 芯动科技 封装测试

[行业资讯] OmniVision推出高性价比、高分辨率全局快门图像传感器

OmniVision推出高性价比、高分辨率全局快门图像传感器

9月25日,豪威科技公司今日发布旗下全局快门图像传感器家族的两款新型高分辨率产品--OG02B1B/OG02B10和OV9285。这两款新型传感器旨在提供具高性价比的解决方案,适用于各种消费类和工业机器视觉应用。尤其,致力于为高速增长的市场......

关键字:传感器 图像传感器 3D建模

[真心话] 工程师中大热的的“技术型复合人才”究竟是什么?

工程师中大热的的“技术型复合人才”究竟是什么?

经过半年的工作和学习,突然想到以前在哪里听说,技术型复合人才比较抢手。单从技术角度看,我认为在任何科技领域,除了能够出色完成自己手中的工作外,还能帮助两个、多个研发人员甚至整个团队解决从理论、方案到工程实现中所面临各种难题,这样的人才应该能......

关键字:工程师

[新鲜事] 库克笑了,特朗普表示不会对中国组装的iPhone加征关税

库克笑了,特朗普表示不会对中国组装的iPhone加征关税

6月19日消息,据VentureBeat报道,随着美国计划对中国产品加征500亿美元关税,中美之间的贸易紧张局势继续升级,苹果担心中国将为其产品设置监管和出货障碍。苹果首席执行官蒂姆·库克(Tim Cook)正在与两国政......

关键字:特朗普 库克 iPhone
条评论

我 要 评 论

网友评论

大家都爱看

  • 扇出型晶圆级封装的优势和挑战!

    我们有能力创造一些能保持前代性能并且更好更小的电子设备,例如今天的可穿戴设备、智能手机或平板电脑,这是由于很多因素超过摩尔定律而快速发展,从而能够从底层的嵌入组件发展到今天把它们封…

    2018-03-29
  • Xilinx推出革命性的新型自适应计算产品

    自适应和智能计算的全球领先企业赛灵思公司(Xilinx, Inc.,(NASDAQ:XLNX)),近日宣布推出一款超越FPGA功能的突破性新型产品,名为ACAP(Adaptive Compute Acceleration Platform,自适应计算加速…

    2018-03-20
  • 赛普拉斯为树莓派3 B+ IoT单板计算机提供强大稳定的无

    先进嵌入式系统解决方案的领导者赛普拉斯(纳斯达克代码:CY)近日宣布其Wi-Fi®和蓝牙®combo解决方案为全新的树莓派 3 B+(Raspberry Pi 3Model B+)IoT单板计算机提供强大稳定的无线连接…

    2018-03-20
  • 观看直播领红包,SEED-A10加速卡助力人工智能

    随着云服务器、云计算的发展,大家对硬件加速的需求越来越多,但是随着设备功耗的上升、性能需求越来越高,常规加速设备以及开始不能满足需求,因此FPGA逐渐在硬件加速中找到了自己的位置,而艾…

    2018-03-19
  • 特朗普:博通不得以任何形式收购高通

    白宫周一(3月12日)晚发出声明,川普(特朗普)总统出于“国家安全”考量、禁止新加坡博通公司(Broadcom)收购美国高通公司(Qualcomm)。

    2018-03-14