当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]电磁感应加热,或简称感应加热,是加热导体材料比如金属材料的一种方法。它主要用于金属热加工、热处理、焊接和熔化。顾名思义,感应加热是利用电磁感应的方法使被加热的材料的内部产生电流,依靠这些涡流的能量达到加热目的。

电磁感应加热,或简称感应加热,是加热导体材料比如金属材料的一种方法。它主要用于金属热加工、热处理、焊接和熔化。顾名思义,感应加热是利用电磁感应的方法使被加热的材料的内部产生电流,依靠这些涡流的能量达到加热目的。感应加热系统的基本组成包括感应线圈,交流电源和工件。根据加热对象不同,可以把线圈制作成不同的形状。线圈和电源相连,电源为线圈提供交变电流,流过线圈的交变电流产生一个通过工件的交变磁场,该磁场使工件产生涡流来加热。

高频感应加热电源驱动电路设计方案就目前国内的感应加热电源研发现状而言,高频感应加热电源是主流的研发设计方向,也是很多工程师的工作重点。在今天的文章中,我们将会为大家分享一种基于IR2llO芯片的高频感应加热电源驱动电路设计方案,希望能够通过本次的方案分享,帮助大家更好的完成研发设计工作。

在本次所分享的高频感应加热电源驱动电路设计方案中,我们使用芯片IR2llO用于该种驱动半桥串联谐振逆变器的电路设计,如下图图1所示。从图1中我们可以看到,在该电路系统中,VD是自举二极管,采用恢复时间几十纳秒、耐压在500V以上的超快恢复二极管10Ia16。CH是自举电容,采用0.1μF的陶瓷圆片电容。CL是旁路电容,采用一个0.1μF的陶瓷圆片电容和1μF的钽电容并联DD、VCC分别是输入级逻辑电源和低端输出级电源,它们使用同一个+12V电源,而VB是高端输出级电源,它与VCC使用同一电源并通过自举技术来产生。在这里由于考虑到了在功率MOSFET漏极产生的浪涌电压会通过漏栅极之间的米勒电容耦合到栅极上击穿栅极氧化层,所以在T1、T2的栅源之问接上12V稳压管D1、D2以限制栅源电压,以此来保护功率M0SFET。

 

 

负偏压与功率扩展电路

在了解了这种高频感应加热电源的半桥串联谐振逆变器设计图之后,接下来我们来看一下如何完成负偏压与功率扩展电路的设计工作。下图中,图2给出了具体的负偏压与功率扩展电路。虚线右边为功率扩展电路,采用两对P沟道和N沟道MOSFETQ1、Q3和Q2、Q4,组成推挽式输出结构。这是一个高输入阻抗的功率缓冲器,可以产生8A峰值输出电流,并且静态电流是可以忽略的。

在这一负偏压与功率扩展电路设计的运行过程中,当输入信号为高电平时,Q2的栅极也为高电平,从而Q2导通,这就使得Q3的栅极变为低电平,这样Q3就导通,则输出也为高电平;当输入信号为低电平时,Q1导通,这就使得Q4的栅极变为高电平,这样Q4就导通,则输出也为低电平。其中,Q1、Q2对Q3、Q4来说是一个低电流的驱动器,Q3、Q4是输出晶体管,它们的大小可以依据输出峰值电流的需要来进行选择。当输入信号改变状态时,R1限制在几纳秒时问内两晶体管同时导通时通过Q1、Q2的电流。当输入转变到一个新的状态时,驱动器晶体管迅速释放掉栅极的电荷,强制输出晶体管关断。与此同时,另一输出晶体管的栅极迅速被R1充电,由R1和输出晶体管的输入电容所构成的RC时间常数将会使导通延迟。

 

 

在上图图2中,我们可以看到,该系统的虚线左边设计是负偏压电路。在这一负偏压电路系统中,D1、C1和R2对Q2来说是一个电平转换器,C1、C3、D2和D3把输入信号转换成负的直流电压,从而形成负压偏置。下图图3给出了此电路具体的实验结果。其中,通道1是IR2110输出的驱动信号波形,通道2是该驱动信号经过负偏压与功率扩展电路后的输出波形。

 

 

驱动信号占空比调节电路

在本文所设计的高频感应加热电源驱动电路系统中,这种基于IR2110芯片所设计的半桥串联谐振逆变器,主要采用M0SFET作为主开关器件,功率器件MOSFET在电路中的设计见图1中的T1、T2。在这种半桥串联谐振逆变器的控制电路中,我们主要采用锁相环电路来实现频率跟踪,但是,在这种电路系统中,锁相环MM74HC4046输出信号的占空比为50%,若将其直接加到IR2110输入端的话,那么输出驱动信号的占空比也是50%,将其加到主开关器件T2、T2的门极之后,驱动信号将会受到线路杂散电感、寄生电容以及该MOSFET输入阻抗、内部寄生电容等的影响,使得占空比超过50%,从而无法设置正确的死区,不能满足半桥串联谐振逆变器的正常驱动要求。

想要解决该电路系统中的占空比问题,我们可以使用一个相对而言比较简单的方法,那就是在驱动电路的前级加占空比调节(死区形成)电路。将加到IR2110输入端的驱动控制信号的的占空比变得小于50%,使得加到T1、T2门极驱动信号的占空比可灵活调节至略低于50%,从而可以产生满足实际应用需要的死区。具体的电路如下图图4所示。

 

 

通过图4所展示的占空比调节电路图中我们可以看到,在添加了调节电路后,这种高频感应加热电源的电路系统中,频率跟踪电路输出的占空比为50%的方波信号经两级74HC14整形后,分别送人上升沿触发的JK触发器74HC109和由RC组成的死区调节电路,两者的输出分别相与,就可以得到如图4所示的两组驱动控制信号,将它们分别送入IR2110的高、低输入端,就可以得到满足实际使用要求的驱动信号翻。

下图中,图5所显示的是经过这种占空比电路调节后的IR2110高、低端驱动信号。在具体的应用过程中,工程师可以根据实际占空比的需要,通过调节电位器而得到不同的死区信号,因而也就可以得到不同占空比的驱动信号,也就是可以得到不同死区的驱动信号。经过测试,此电路可以工作在50kHz~5MHz频率范围内,占空比可以在25%一50%之间调节,它可以满足绝大多数应用场合。

 

 

以上就是本文所分享的一种基于IR21l0芯片的高频感应加热电源驱动电路的设计,希望能够对各位工程师的设计研发工作有所帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

近日,国内新一代激光陀螺驱动系列功能芯片问世,由湖南二零八先进科技有限公司(下简称“二零八公司”)技术团队研发。相比行业内普遍应用的上一代激光陀螺驱动控制电路,激光陀螺驱动专用芯片降低了电路设计难度,大幅减小体积重量,实...

关键字: 激光陀螺仪电路 芯片 电路设计

R是施密特触发器输入端的一个10KΩ下拉电阻,时间常数为10×10-6×10×103=100ms。

关键字: 复位 电路设计 施密特触发器

学好电子技术基础知识,如电路基础、模拟电路、数字电路和微机原理。这几门课程都是弱电类专业的必修课程,学会这些后能保证你看懂单片机电路、知道电路的设计思路和工作原理;

关键字: 单片机 编程 电路设计

Buck-Boost电路工作原理及其应用你有没有去了解过呢?随着科技的不断发展,电力电子技术在各个领域得到了广泛的应用。其中,Buck-Boost电路作为一种重要的电力电子变换器,具有很高的实用价值。本文将对Buck-B...

关键字: buck-boost 电路设计

本文是开发测量核心体温( CBT )传感器产品的刚柔结合电路板的通用设计指南,可应用于多种高精度(±0.1°C)温度检测应用。

关键字: 温度传感器 电路设计

自9月22日开始,2023年中国大学生工程实践与创新能力大赛选拔赛在全国各省市陆续展开,10月29日北京、海南、新疆等区域选拔赛成功举办,也为今年的选拔赛画上了圆满的句号。在此,向那些成功晋级国赛的选手们致以热烈祝贺,同...

关键字: PCB 电路设计

自从智能手机、平板电脑、笔记本电脑的兴起,内置的锂电池技术没有革命性突破,续航问题一直伴随着这些数码设备,移动电源的出现给我们出行过程中学习、工作、娱乐提供了更多额外的电量,可谓是功不可没。

关键字: 移动电源 电路设计 智能手机

低纹波直流稳压电源设计基于晶体管显示在这里。这种晶体管稳压器适用于需要高输出电流的应用。常规一系列综合监管机构,像7805只能提供高达1A。其他系列通晶体管被添加到7805稳压电路,为改善他们目前的能力。

关键字: 直流 稳压电源 电路设计
关闭
关闭