首页 > 嵌入式硬件 > 嵌入式处理器

  近年来视频传输领域几乎经历了从模拟到数字根本转变,VGA(视频图像阵列)和分量视频—模拟视频(模拟分量视频信号(Y、U、V或Y、R-Y、B-Y) 接口)连接方式。

正在被HDMI(高分辨率多媒体接口)和DVI(数字视频接口)以及DisplayPort所取代。这是因为随着人们对图像显示质量要求的不断提升,传统的以模拟方式来传输和显示多媒体信号的技术已经不能满足人们的要求,特别是传统的模拟视频接口标准无法适应新的产品在带宽、内容保护、音频支持等方面的发展需求,以高清数字电视为代表的消费类数字视频设备的应用越来越普遍使得HDMI UDI DisplayPort等新标准显得更能适应市场的需求,本文将对HDMI/DVI新技术与芯片及其应用作分析说明。

  1、先述HDMI/DVI数字视频接口基本架构

  HDMI和DVI(Digital Visual Interface)数字视频接口这两种数字视频传输标准的要求几乎完全相同,并同时处理一组高频和低频信号。这两种标准均采用TMDS(最小跳变差分信号又称最小化传输差分信号)技术来传输数据的高频(视频)部分。

  1.1 HDMI/DVI数字视频接口的设计思想

  DVI用于至数字显示器的高速数字连接。DVI采用了TMDS技术来传输数据的高频(视频)信号(见图1红色块所示)。

  

DVI采用了TMDS技术来传输数据的高频

  其单个链路可支持高达165Mpixels/s的UXGA(极速扩展图形阵列)、FPD(平面显示器)、SXGA DCRT(高级扩展图形阵列的数字平面显示器),还支持720p及1080i的HDTV(高清电视)。

  高带宽数字内容保护(HDCP)。用于通过DVl发送视频信号时的内容保护;HDCP的实现(见图1兰色块HDMI/DVI- HDCP的实现示意),需要从数字内容保护认证的L.L.C(Intel的子公司)获取唯一的许可。

  其HDCP基础。认证是一个流程,用于核实一个经授权的器件以处理受保护的内容;闰用加密技术防止受保护内容受到窃听。

  其TMDS 信号采用四个差分对传输R、G、B和时钟,占用19针连接器的8个引脚。HDMI和DVI设计为“即插即用”,即监视器(接收端)和视频源连接在一起时寻找以最佳性能协同工作的方法。多数新型TMDS HDTV(高清晰度电视)芯片包含两组完整TMDS (高频)输入,但无法处理LoF(低频)信号。

  1.2 HDMI/DVI数字视频接口功能

  要实现HDMI和DVI系统中的“即插即用”功能,源端(通常是一台电脑、DVD播放器或游戏机)和接收端(通常是监视器或接收机)必须连接起来。HDMI 和DVI借用VESA (视频电子标准协会)的开放标准,采用DDC(数字显示通道)、一个称为HPD的新信号(热插拔检测)、以及一路可以由源端向接收端提供50mA电流的标准5V信号。在标准的VESA方法中,源端寻址EDID(扩展显示标识数据)EPROM。该EPROM器件包含接收设备的品牌、类型号、以及所支持的分辨率模式。源端和接收端必须至少有一种相同的显示模式,以便二者协同工作。

  图2所示为通过HDMI/DVI连接器连接源端与接收端EDIDEPROM的示意图。  

通过HDMI/DVI连接器连接源端与接收端EDIDEPROM的示意图

  图2 中给出了作为四个差分对连接的TMDS信号,+5V,HPD以及DDC信号。DDC信号连接至EDID。EDID电源由接收端内部提供。该图说明了源端和接收端的通用连接模式。源端和接收端通过I2C兼容的DDC线路进行通信。I2C规范是+5V规范。典型的EDID EPROM如24LC22包含2kb的EPROM用于存储所需信息,可工作于2.5V至5.5V。工作于+3.3V电源时,典型的低成本EDID EPROM不具备+5V耐压。因此,EDID EPROM器件必须工作于+5V电源,或者外部带有+5V保护。

  显示数据信道(DDC)是用于读取表示接收侧清晰度等显示能力的扩展显示标识数据(EDID)的信号线。搭载HDCP的发送接收设备之间也利用DDC线进行密码键的认证。而连接源设备与接收器.任何源设备与接收器之间的HDMI连接都具有智能化的特点,即接收器的EDIDROM芯片将显示所支持的全部音频和视频格式,包括色深模式。这种方式可以使用户享受到经过自动优化、达到最佳质量模式的音频与视频体验,所有连接在一起的HDMI设备都能够对这种功能提供相互支持。

  既然HDMI/DVI是基于TMDS技术支持,所以应对其技术特征作分析。

  2、TMDS(最小跳变差分信号)技术特征

  最小化传输差分信号(TMDS)作为电气电平的标准。被应用于发送数字视频接口(DVl)及高清晰度多媒体接口(HDMl)的数据。其设计考虑因素之包括:

  对内偏斜(Intra-Pai rSkew)。在给定的一对差分信号上,真(true)信号及其互补信号之间的时间差应尽可能的小;

  残余抖动(Residual Jitter)。测试点与信号源之间所测量到的抖动数量的差异。可接受的最大残余抖动等价于发射机与接收机之间最小的抖动预计量(budget);

  静电放电(ESD)。外部连接器因曝露于外界,因而更易受到静电放电的影响。更高的静电放电率可提供更良好的保护。

  TMDS 包括3个RGB数据和1个时钟,共计4个通道(称为1个TMDS连接或Single-link)的传输回路。TMDS是把8位的RGB视频数据变换成10 位转换最小化、DC平衡的数据,再完成数据的串行处理;接收端设备对串行数据解串行变成并行数据,再转换成8位视频信号。因此,传输数字RGB数据需要3 个转换最小化差分采样信号构成一个TMDS连接。

为此可将图2具体细化如图3所示说明。  

将图2具体细化

  每个通道提供165MHz带宽,1个10位的TMDS传输通道速率达1.65Gb/s,3个TMDS通道速率达4.95Gb/s。若采用dual-1ink 连接方式,其带宽可达330MHz,传输速率可达9.9Gb/s,支持1600Х1200@
85Hz的UXGA或2048Х1536@75Hz的QXGA 图像以及720p、1080i、1080p的HDTV视频信号的无压缩实时传输。

  从上图3可知,发送器分别将视频、音频信号变换并合成为接收器可接收的信号格式。然后,进行HDCP加密处理以及TMDS编码,将并行视频、音频等数据行串行化处理,以最小化差分信号形式进行传输。在接收侧进行的处理与发送侧顺序相反。搭载HDCP的发送接收设备之间也利用DDC线进行密码键的认证。这是一个使用了硬件ID的加密系统,发送侧和接收侧以一定间隔相互确认进行传输。HDMI搭载了认证不成立或者中途不成立时图像和音频信号传输立即被中断的强大内容保护技术。

  3、HDMI是DVI标准的升级和增强版

  HDMI 是DVI标准的升级和增强版,支持音频信号,改进了DVI标准的不足,可以简单理解为:DVI+音频=HDMI。HDMI接口小巧(与USB相当),传输的线缆长度15m,HDMI向下兼容DVI,HDMl也支持HDCP(高带宽数字内容保护),避免内容非法拷贝,同时还支持VESA组织的EDID(扩展显示识别数据)、DDC(显示数据通道,用以读出EDID)及DMT(监视同步协议)。HDMI也采用TMDS编码方式,TMDS具备RGB或YPbPr 色彩数据和时钟,共4个通道(称为1个连接)的系列传输回路,1个通道带宽165MHz(4.95Gb/s)。显示数据信道(DDC)是用于读取表示接收侧清晰度等显示能力的扩展显示标识数据(EDID)的信号线。搭载HDCP的发送接收设备之间也利用DDC线进行密码键的认证。这是一个使用了硬件ID的加密系统,发送侧和接收侧以一定间隔相互确认进行传输。HDMI搭载了认证不成立或者中途不成立时图像和音频信号传输立即被中断的强大内容保护技术。

  4、HDMl在深色技术中的应用颇受青睐。

  4.1新版的HDMl l.3标准特征优势。

  最新版的HDMl l.3标准,它具有高传输带宽(10.2 Gb/s)、深色和“xvYCC”色彩等强大功能时,随着视频分辨率从标清到高清的演化,视频带宽的不断增加将是大势所趋。其性能指标:视频带宽为 340MHz(10Gbps)1080p,刷新率最高为120Hz;色深为24、30、36、48位;色彩空间为xvVCC 、RGB、YCbCr;音频为杜比TrueHD、DTS-HD、SACD、DVD音频、PCM、杜比数字、DTS;控制为CEC;连接器为迷你HDM、A 型。

  HDMl 1.3版本传输的视频数据将具有更高的分辨率,呈现出来的清晰、明快的画面内容也将比以往更为丰富。HDMl 1.3版本的特点包括深色技术(DeepColor)带来的更加生动鲜明的色彩,以及多项其他改进,如:更为出色的声音与画面的同步功能、支持无损高清音频格式、xvYCC扩展色谱以及全新的小型连接器等。从而为用户带来更为鲜艳的色彩和更为逼真的电视体验,解决了当今高对比度显示技术常见的带状干扰问题。深色技术能够在最暗的黑色值和最亮的白色值之间提供更多灰色阴影,从而提高了对比度增加后的显示质量,能在屏幕上呈现出更为流畅的色彩图像。新版本还增加了对xvYCC色彩标准的支持,从而极大地扩展了现有高清电视的色谱,如高清DVD与蓝光播放器等。深色技术还被应用于最新的游戏机产品中,见设计方案框图4所示,为游戏机玩家带来更为生动的游戏体验。  

设计方案框图

  上图中HDMI发射器与接收呈器了可用体TI的TFP510与TFP501型芯片或Sil9134和Sil9133型芯片。
为了完全实现源设备和高清电视之间的高数据传输速率,系统所用电缆必须能够处理更强的带宽信号。值此讨对当今电缆均衡器新技术典型应用作说明。

 4.2数字视频均衡器新技术应用

  数字均衡器扩展DVI/HDMI电缆的距离至60米,带有±5kVESD保护.扩展数字视频应用至5米界限以外。现代的显示器(LCD、DLP)和信号源 (DVD播放器、PC)能够以原始的数字模式发送和接收视频信号,这是保持图像完整性的最佳方式。DVI/HDMI接口取代了模拟分量视频和VGA互连,但最长只能达到5米。如用MAX3815 DVI/HDMI数字视频电缆均衡器突破了3米至5米的电缆长度限制,将电缆距离延长至60米。MAX3815特别适合于那些远离信号源的数字显示器,例如LCD/DLP投影仪和LCD/等离子显示屏等。见图5所示。 

数字视频均衡器

  其MAX3815TMDS 数字视频均衡器,用于DVI/HDMI电缆。该电缆均衡器IC,可将DVI/HDMI信号传输距离延长到60米MAX3815电缆均衡器自动为DVI, HDMI, DFP, PanelLink和ADC电缆提供补偿。MAX3815适用于对最小转换差分信号(TMDS)格式编码的信号进行均衡。MAX3815可以为三个 TMDS(最少转换差分信号)通道上、高达1.65Gbps每通道的信号加一路十分之一(0.1x)速率的时钟提供最多40dB的损耗补偿。 MAX3815自动扩展了VGA、SVGA、XGA和UXGA计算机的分辨率,以及480p、720p和1080iHDTV的分辨率。MAX3815 TMDS均衡器,1.65Gbps(825MHz)速率下最高40dB的全自动均衡,无需用户控制,+3.3V电源时0.6W功耗。

  数字视频均衡器应用:可理想用于数字标示牌、数字投影仪和家庭影院;均衡器可用于显示器内部或外部;接收器内的均衡器根据电缆长度和损耗自动调整一无信号扭曲。

  5、几种适用于HDMI/DVI技术的芯片与应用

  5.1MAX4929E用于HDMI(高分辨率多媒体接口)/DVI(数字显示接口)低频开关

  MAX4929E 是一款低频HDMI/DVI开关,设计用于监视器或HDTV接收器。该器件能够处理所有需要切换的低频信号,可以和新型MAX4886TMDS开关或具有两路输入的TMDS接收器配合使用。为了在两路HDMI/DVI源之间切换,设计人员必须处理两路不同的信号:TMDS高频信号和前面提到的低频信号。一些新型HDMI处理器已包含两套可处理高频TMDS信号的输入端,但是无法处理带有高压的低频信号。MAX4929E可在处理上述低频信号时提供最大的灵活性。

  其低频控制开关(MAX4929E)特性

  集成的控制:两路源出至一路吸入;所有外部I/O端口均具有±15kV ESD保护;热插拔检测信号,将MCU转换至TTL电平;3.0V至5.5V DDC输出箝位;4mm x 4mm、20引脚或20引脚QSOP封装在低频视频信号源之间切换。

  使用MAX4929E,所有与外部连接器连接的信号都具有±15kV HBM (人体模型)保护。这种高级别的ESD保护通常可以省去各引脚的额外保护措施。MAX4929E允许接入两组DDC信号,器件选择其中一路输入。这种源切换可实现多种功能:为信号提供ESD保护、同一时刻只选通一个源端并提供逻辑电平箝位,以保护EDID EPROM端不出现高于其电源的电压。

  在多数系统中,MCU控制各种操作。MCU必须确定输入是否有效,并且在EDID握手之后,返回一个TTL兼容的HPD信号。MAX4929E的功能可解决三个问题:HPD输出端的ESD保护;允许MCU确定所选的HDMI输入是否已连接;提供从低电压MCU至5V TTL兼容信号的逻辑电平转换功能。

  图6为原理图给出MAX4929E的典型电路连接方式。该器件提供实现完整的2:1 HDMI或DVI开关所要求的切换、逻辑电平匹配以及ESD保护功能。

MAX4929E的典型电路连接方式

MAX4929E 应用。除了与包含两路高频输入的TMDS器件协同工作外,MAX4929E还可与MAX4886 HDMI/DVI视频开关组成芯片组,用于将两组TMDS输入和集成到单个装置中,见图7所示。MAX4886/MAX4929E芯片组可为单路输入设备提供第二组输入。

 

MAX4929E与MAX4886 HDMI/DVI视频开关组成芯片组

MAX4886 高速模拟开关可理想用于HDMI/DVI切换应用,允许2:1或1:2切换。MAX4886包含4个1:2或2:1开关差分对,用于RBG和时钟信号的选择。

MAX4886可将1个监视器连接至2路数字视频信号中的一路,或将一路HDMI/DVI信号源连接至2个负载(接收器)中的一个。能为为视频信号的 RBG和时钟信号提供8Ω (典型值)导通电阻和2.5pF导通电容的开关。MAX4886是MAX4929的高频配套器件。两个芯片组合可实现完整的2:1 HDMI/DVI选择功能。适合于笔记本电脑等功耗敏感的应用。

MAX4929E控制2:1 HDMI/DVI开关中所有低频信号的切换。为所有外部引线提供高等级的ESD保护。MAX4929E与EDID EPROM配合使用,其输入端可接受+5V信号电平并将输出钳位至+3.3V电平,以便匹配EDID。另外,MAX4929E隔离了一条电缆的电容,所以 DDC输出每次仅带有一组DDC连接。

  5.2 PaneIBUS HDCP数字接收机TFP507、TFP503

  TFP501 及TFP503是源自TI的PaneIBUS(板总线)平板器示产品,是涵盖面极广的端到端(end-to-end)DV1.0兼宅决方案系列的一部分。 TFP501/TFP503支持以24位真彩色像素的制式,达到UXGA标准的分辨率来进行显示,并包括了标难HDTV制式。TFP501丌FP503提供了设计的灵活性,每时钟周期可驱动一或两个像素点,支持TFT或DSTN显示板,并提供了时间交错(time-staggered)像素点输出选项以降低接地反弹(ground-bounce)。

  主要特点:

  支持UXGA分辨率(输出像素速率高达165MHz);兼容数字视频接口(DVI)及大带宽数字内容保护(HDCP)规范;经加密的外部HDCP器件密钥储存库,更为安全且易于实现;真彩色、24位/像素,48位双像素输出模式,16.7/M彩色时每时钟周期一或两个像素;4x过采样,以降低位错误率,并在通过较长的缆线传输时获约得好的性能;嵌入式的HDCP密钥(仅限TFP503);支持热插入(hot-plug)检测;封装模式:100引脚TQFPPowerPAD封装。

  应用:桌面型LCD显示器,DLP及LCD投影仪,数字电视。

  5.3 PaneIBUS数字发射机TFP510、TFP513

  TFP510 及TFP513所提供的通用接口允许无胶合(glueless)连接至最常用的图形控制器。此类通用接口的部分优点包括了可选择的总线宽度、可调节的信号电平以及差分和单端的时钟。DVI接口所支持的平板显示分辨率在165MHz、24位真彩色像素制式时,可达到UXGA的标准。

  主要特点:

  兼容数字视频接口{DVI);支持从VGA-UXGA的分辨率(25MHz至165MHz的像素率);通用图形控制器接口:12位、双缘(dual- edge)及24位、单缘(single-edge)输入模式,可调节的1.1V至1.8V以及标准的3.3VCMOS输入信号电平,全差分及单端的输入时钟模式,标准的Intel 12位数字视频端口兼容,与Intel的81x芯片集一致;可编程使用I2C串行接口;通过热插入及接收机检测实现对监视器的检测;嵌入式的HDCP密钥 (仅限TFP513);封装模式:64引脚TQFPPowerPAD封装。


换一批

延伸阅读

[行业资讯] vivo×三星双模5G AI芯片媒体沟通会即将召开

vivo×三星双模5G AI芯片媒体沟通会即将召开

vivo日前向媒体透漏将于11月7日举行“vivo×三星双模5G AI芯片媒体沟通会”。从邀请函不难看出,vivo新机要首发三星Exynos 双模5G SOC。当前vivo已经推出NE......

关键字:vivo 三星 双模5G AI芯片

[行业资讯] 华为投资裕太车通,涉猎车载以太网芯片

华为投资裕太车通,涉猎车载以太网芯片

今日,华为投资控股旗下哈勃科技投资有限公司向以太网PHY芯片供应商裕太车通投资使其完成新一轮战略融资,具体投资比例及金额未披露。天眼查显示,10月28日,裕太车通新增一......

关键字:华为 裕太车通 以太网 芯片

[行业资讯] 国产芯片即将有大动作

国产芯片即将有大动作

据了解,近日中国在培育本土芯片上又有大动作。有外媒报道称,中国新设了价值 2041.5 亿元人民币(约合 289 亿美元)的国家半导体基金第二期,致力于寻求培育本土芯片产业,......

关键字:国产芯片 华为

[行业资讯] 华为研发的PA芯片已交给国内代工厂

华为研发的PA芯片已交给国内代工厂

根据华为业内人士消息,同时据供应链消息人士手机晶片达人证实称,华为研发的PA芯片已交给国内代工厂,明年Q1季度开始量产。据悉,5月中旬,华为被美国列入实体名单。这意味......

关键字:华为 PA芯片

[行业资讯] 2019“中国芯优秀技术创新产品”奖由紫光展锐的虎贲T710芯片斩获

2019“中国芯优秀技术创新产品”奖由紫光展锐的虎贲T710芯片斩获

日前,在2019“中国芯”集成电路产业促进大会上颁发的“中国芯优秀技术创新产品”奖,紫光展锐的虎贲T710芯片崭露头角。“中国芯”优秀产品......

关键字:紫光展锐 虎贲T710芯片
条评论

我 要 评 论

网友评论

大家都爱看