当前位置:首页 > 模拟 > 模拟
[导读]三极管极间电容的存在→ β 成为频率的函数→ β 的频率特性→描述三极管频率特性的几个参数(三极管频率参数)→考虑极间电容时的等效电路(混合 π 型等效电路)。三极管由两个PN结组成,而

三极管极间电容的存在→ β 成为频率的函数→ β 的频率特性→描述三极管频率特性的几个参数(三极管频率参数)→考虑极间电容时的等效电路(混合 π 型等效电路)。

三极管由两个PN结组成,而PN结是有电容效应的,如图3.3所示。

信号频率不太高时(如低频、中频)→结电容容抗很大→可视为开路→结电容不影响放大倍数。当频率较高时→结电容容抗减小→其分流作用增大→集电极电流 i c 减小→ i c 与 i b 之比下降→三极管电流放大系数 β 将降低→放大倍数降低。同时,由于 i c 与 i b 之间存在相位差,放大倍数还会产生附加相移。

因此,信号处于低频和中频时,电流放大系数 β 是常数,高频时,电流放大系数 β 是频率 f 的函数,可表示为

β ˙ = β 0 1+j f f β

β 0 —中频时共射电流放大系数。 β ˙ 的模可表示为:

| β ˙ |= β 0 1+ ( f f β ) 2

其随频率变化的特性如图3.4所示。

三极管的几个频率参数:

3.2.1 共射截止频率 f β

共射截止频率 f β : | β ˙ |= 1 2 β 0 ≈0.707 β 0 时所对应的频率。

3.2.2 特征频率 f T

特征频率 f T : | β ˙ |=1 时所对应的频率。

当信号频率 f> f T 时, | β ˙ |<1 ,三极管将无放大能力。所以不允许三极管工作在如此高的频率。特征频率 f T 与截止频率 f β 的关系如下:

1= β 0 1+ ( f T f β ) 2

通常 f T / f β >>1 ,所以 f T ≈ β 0 f β 。

3.2.3 共基截止频率 f α

由 α ˙ 与 β ˙ 的关系可知:

α ˙ = β ˙ 1+ β ˙

所以, α ˙ 也是频率 f 的函数,可表示为

α ˙ = α 0 1+j f f α ,

| α ˙ |= α 0 1+ ( f f α ) 2

共基截止频率 f α : | α ˙ |= 1 2 α 0 ≈0.707 α 0 时所对应得频率。

f α 、 f β 、 f T 三者的关系分析如下:

α ˙ = β ˙ 1+ β ˙ = β 0 1+j f f β 1+ β 0 1+j f f β = β 0 1+ β 0 1+j f ( 1+ β 0 ) f β

∴ f α =( 1+ β 0 ) f β

可见, f α >> f β ,因此共基组态的高频特性比共射组态的好。

f α 、 f β 、 f T 三者的关系: f β < f T < f α 。

一般 β 0 >>1 , ∴ f α ≈ β 0 f β = f T 。

三极管的频率参数是选择三极管的重要依据之一。通常,在要求通频带比较宽的放大电路中,应选用高频管,即频率参数值较高的三极管。如对通频带没有特殊要求,可选用低频管。

3.2.4 三极管混合 π 型等效电路

1. 三极管混合 π 型等效电路

考虑三极管极间电容后,三极管内部结构如图3.5(a)所示,其中:

C b'e —发射结等效电容;

C b'c —集电结等效电容;

r b'c —集电结反向电阻,其值很大,可视为开路;

r b'e —发射结正向电阻;

r bb' —基区体电阻电阻;

g m U ˙ b'e —发射结对集电极电流的控制作用, g m 称为跨导。

将 r b'c 视为开路,则可得三极管混合 π 型等效电路等效,如图3.5(b)所示。

2. 混合 π 型等效电路参数确定

低频和中频时,极间电容可不考虑,此时的混合 π 型等效电路如图3.6(a)所示。图3.6(b)为三极管微变等效电路。

比较图3.6(a)和(b)可得:

r be = r bb' + r b'e = r bb' +( 1+β ) 26(mV) I EQ (mA)

比较还可得:

g m U ˙ b'e = g m I b r b'e =β  I b

g m = β  I b I b r b'e = β r b'e = β β 26(mV) I EQ (mA)

C b'e 由下式计算:

3.2.5 简化的混合 π 型等效电路

在混合 π 型等效电路中, C b'c 跨接在 b ' 和 c 之间,将输入回路与输出回路直接联系起来,使电路的求解过程很复杂。为此,可利用密勒定理将 C b'c 分别等效为 b ' 、 e 之间电容和 c 、 e 之间电容,如图3.7所示,其中 K= U ˙ ce / U ˙ b'e 。

推导过程:

I ′ = U ˙ b'e − U ˙ ce 1 jω C b'c = U ˙ b'e ( 1− U ˙ ce U ˙ b'e ) 1 jω C b'c

令 U ˙ ce U ˙ b'e =K ,则

I ' = U ˙ b'e ( 1−K ) 1 jω C b'c = U ˙ b'e 1 jω( 1−K ) C b'c

所以,从 b ' 、 e 两端看进去,可等效为 (1−K) C b'c 。

同理:

I " = U ˙ ce − U ˙ b'e 1 jω    C b'c = U ˙ ce ( 1− 1 K ) 1 jω    C b'c = U ˙ ce 1 jω   ( K−1 K )    C b'c

所以,从 c 、 e 两端看进去,可等效为 ( K−1 ) K C b'c 。

最后得简化混合 π 型等效电路如图3.8所示。其中 C ' = C b'e +(1−K) C b'c

【更多资源】

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电力电子领域,逆变器是一种将直流电(DC)转换为交流电(AC)的装置,广泛应用于各种电子设备中。对于2200W的逆变器而言,选择合适的三极管型号对于保证逆变器的性能、效率和可靠性至关重要。本文将深入探讨2200W逆变器...

关键字: 2200w逆变器 逆变器 三极管

在下述的内容中,小编将会对三极管的相关消息予以报道,如果三极管是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 8050 三极管

三极管,全称为半导体三极电子管,是电子技术中极为重要的基本元器件之一,其在电路设计中的作用至关重要。三极管的发明和应用极大地推动了现代电子工业的发展,从简单的信号放大、开关控制到复杂的逻辑运算、功率转换等众多领域都有其身...

关键字: 三极管 功率转换

三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

关键字: 三极管 双极型晶体管 晶体三极管

电子管屏极电阻的取值是电子管放大器设计中的关键一环,它直接影响到放大器的性能。本文将从电子管的工作原理出发,详细探讨屏极电阻的取值方法,包括理论计算、经验公式、实际应用中的考量等方面,以期为电子管放大器设计提供参考。

关键字: 电子管屏极电阻 电子管放大器 三极管

现如今,越来越多的半导体厂商开始重视低功耗设计,以不断提升产品性能和优化应用方案来满足更多的市场需求。作为行业的引领者,PI在该领域内必然不会缺席,其最近推出的InnoMux-2™系列单级独立稳压的多路输出离线式电源IC...

关键字: PI IC 电源开关

近日,功率变换IC领域的全球领导者Power Integrations推出了一款InnoSwitch™5-Pro系列高效率、可数字控制的反激式开关IC,旨在为业界提供一种更高功率、更低成本的快充解决方案。

关键字: PI IC 电源开关

三极管,或称晶体三极管,是电子电路中重要的基础元件,主要用于放大信号、控制电流以及进行电信号的开关操作。其工作特点主要涉及电流放大、开关控制和混频三个基本功能。本论述将详细探讨三极管的工作特点,包括其结构、工作原理以及在...

关键字: 三极管 电子电路 放大信号

三极管是一种常用的电子器件,具有电流放大和开关控制等功能。在电子设备和系统中,三极管作为开关器件广泛应用于信号放大、切换、控制等方面。本文将详细介绍三极管开关的工作原理。

关键字: 三极管 电子器件 开关控制

MOS管将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MOS管的相关情况以及信息有所认识和了解,详细内容如下。

关键字: MOS管 逆变器 三极管
关闭
关闭