当前位置:首页 > 技术学院 > 热搜器件
[导读]DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

 DS18B20测温原理框图

DS18B20有4个主要的数据部件:

(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

(2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

DS18B20温度值格式表

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

(3)DS18B20温度传感器的存储器

DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

(4)配置寄存器

该字节各位的意义如下:

表3: 配置寄存器结构
TM
R1
R0
1
1
1
1
1

低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)

表4: 温度分辨率设置表
R1
R0
分辨率
温度最大转换时间
0
0
9位

93.75ms

0
1
10位

187.5ms

1
0
11位

375ms

1
1
12位

750ms

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

74LS192是一款广泛应用在数字电子系统中的同步十进制可逆计数器集成电路,属于美国德州仪器(TI)早期推出的7400系列TTL逻辑家族的一员。该芯片设计为四位二进制计数器,并因其特殊的十进制计数特性以及双向计数能力而广...

关键字: 74ls192 计数器

74LS175是一款4D触发器集成电路,它包含6个D触发器,这些触发器可以组合起来形成寄存器或抢答器等多种功能部件。

关键字: 74ls175 触发器 寄存器

单片机复位电路的作用是:使单片机恢复到起始状态,让单片机的程序从头开始执行,运行时钟处于稳定状态、各种寄存器、端口处于初始化状态等等。

关键字: 复位电路 单片机 寄存器

2023年11月28日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 宣布与全球工业自动化领域知名供应商Siemens签订代理协议。Sieme...

关键字: 工业自动化 人机接口 计数器

寄存器变量是计算机中一种重要的存储方式,它使用CPU中的寄存器来存储数据和指令。寄存器直接与CPU的运算和控制部件相连,因此访问速度非常快,通常在一个CPU周期内就能完成数据的读写操作。相比于内存和硬盘等存储设备,寄存器...

关键字: 寄存器 存储器

寄存器和存储器是计算机及其它电子设备中的两种重要存储组件,它们在存储方式、存储容量和访问速度等方面存在明显的差异。

关键字: 寄存器 存储器

寄存器和内存是计算机系统的两个重要组成部分,它们之间存在着密切的关系。本文将介绍寄存器和内存的基本概念、功能、类型以及它们之间的关系,旨在帮助读者更好地理解计算机系统的运行原理。

关键字: 寄存器 内存

寄存器是计算机硬件中的重要组件,用于临时存储数据和指令。正确地使用寄存器能够提高程序的执行效率,然而不正确的使用也可能导致各种问题。本文将详细介绍寄存器的使用方法以及在使用时需要注意的事项。

关键字: 寄存器 计算机硬件

寄存器和暂存器都是计算机硬件中的重要组件,它们在计算机系统中发挥着不同的作用。下面我们来详细了解一下它们的区别以及各自的特点和应用。

关键字: 寄存器 暂存器

寄存器是一种重要的计算机硬件组件,用于临时存储数据或指令。在计算机架构中,寄存器是CPU内部的一部分,用于加速数据的处理速度。寄存器通常由高速缓存(cache)和随机存取存储器(RAM)组成。

关键字: 寄存器 计算机硬件
关闭
关闭