当前位置:首页 > 单片机 > 单片机
[导读]应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片机驱动 DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这

应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片机驱动 DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这种情况下,用计时器往往有点小题大做。而在极端的情况下,计时器甚至已经全部派上了别的用途。这时就需要我们另想别的办法了。

以前用汇编语言写单片机程序的时候,这个问题还是相对容易解决的。比如用的是12MHz晶振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要:

mov r0, #09h

loop: djnz r0, loop

51 单片机的指令周期是晶振频率的1/12,也就是1us一个周期。mov r0, #09h需要2个极其周期,djnz也需要2个极其周期。那么存在r0里的数就是(20-2)/2。用这种方法,可以非常方便的实现256us以下时间的延时。如果需要更长时间,可以使用两层嵌套。而且精度可以达到2us,一般来说,这已经足够了。

现在,应用更广泛的毫无疑问是Keil的 C编译器。相对汇编来说,C固然有很多优点,比如程序易维护,便于理解,适合大的项目。但缺点(我觉得这是C的唯一一个缺点了)就是实时性没有保证,无法预测代码执行的指令周期。因而在实时性要求高的场合,还需要汇编和C的联合应用。但是是不是这样一个延时程序,也需要用汇编来实现呢?为了找到这个答案,我做了一个实验。

用C语言实现延时程序,首先想到的就是C常用的循环语句。下面这段代码是我经常在网上看到的:

void delay2(unsigned char i)

{

for(; i != 0; i--);

}

到底这段代码能达到多高的精度呢?为了直接衡量这段代码的效果,我把 Keil C 根据这段代码产生的汇编代码找了出来:

; FUNCTION _delay2 (BEGIN)

; SOURCE LINE # 18

;---- Variable i assigned to Register R7 ----

; SOURCE LINE # 19

; SOURCE LINE # 20

0000 ?C0007:

0000 EF MOV A,R7

0001 6003 JZ ?C0010

0003 1F DEC R7

0004 80FA SJMP ?C0007

; SOURCE LINE # 21

0006 ?C0010:

0006 22 RET

; FUNCTION _delay2 (END)

真是不看不知道~~~一看才知道这个延时程序是多么的不准点~~~光看主要的那四条语句,就需要6个机器周期。也就是说,它的精度顶多也就是6us而已,这还没算上一条 lcall 和一条 ret。如果我们把调用函数时赋的i值根延时长度列一个表的话,就是:

i delay time/us

0 6

1 12

2 18

...

因为函数的调用需要2个时钟周期的lcall,所以delay time比从函数代码的执行时间多2。顺便提一下,有的朋友写的是这样的代码:

void delay2(unsigned char i)

{

unsigned char a;

for(a = i; a != 0; a--);

}

可能有人认为这会生成更长的汇编代码来,但是事实证明:

; FUNCTION _delay2 (BEGIN)

; SOURCE LINE # 18

;---- Variable i assigned to Register R7 ----

; SOURCE LINE # 19

; SOURCE LINE # 21

;---- Variable a assigned to Register R7 ----

0000 ?C0007:

0000 EF MOV A,R7

0001 6003 JZ ?C0010

0003 1F DEC R7

0004 80FA SJMP ?C0007

; SOURCE LINE # 22

0006 ?C0010:

0006 22 RET

; FUNCTION _delay2 (END)

其生成的代码是一样的。不过这的确不是什么好的习惯。因为这里实在没有必要再引入多余的变量。我们继续讨论正题。有的朋友为了得当更长的延时,甚至用了这样的代码:

void delay2(unsigned long i)

{

for(; i != 0; i--);

}

这段代码产生的汇编代码是什么样子的?其实不用想也知道它是如何恐怖的$#^%&%$......让我们看一看:

; FUNCTION _delay2 (BEGIN)

; SOURCE LINE # 18

0000 8F00 R MOV i+03H,R7

0002 8E00 R MOV i+02H,R6

0004 8D00 R MOV i+01H,R5

0006 8C00 R MOV i,R4

; SOURCE LINE # 19

; SOURCE LINE # 20

0008 ?C0007:

0008 E4 CLR A

0009 FF MOV R7,A

000A FE MOV R6,A

000B FD MOV R5,A

000C FC MOV R4,A

000D AB00 R MOV R3,i+03H

000F AA00 R MOV R2,i+02H

0011 A900 R MOV R1,i+01H

0013 A800 R MOV R0,i

0015 C3 CLR C

0016 120000 E LCALL ?C?ULCMP

0019 601A JZ ?C0010

001B E500 R MOV A,i+03H

001D 24FF ADD A,#0FFH

001F F500 R MOV i+03H,A

0021 E500 R MOV A,i+02H

0023 34FF ADDC A,#0FFH

0025 F500 R MOV i+02H,A

0027 E500 R MOV A,i+01H

0029 34FF ADDC A,#0FFH

002B F500 R MOV i+01H,A

002D E500 R MOV A,i

002F 34FF ADDC A,#0FFH

0031 F500 R MOV i,A

0033 80D3 SJMP ?C0007

; SOURCE LINE # 21

0035 ?C0010:

0035 22 RET

; FUNCTION _delay2 (END)

呵呵,这倒是的确可以延迟很长时间~~~但是毫无精度可言了。

那么,用C到底能不能实现精确的延时呢?我把代码稍微改了一下:

void delay1(unsigned char i)

{

while(i--);

}

因为根据经验,越简洁的C代码往往也能得出越简洁的机器代码。那这样结果如何呢?把它生成的汇编代码拿出来看一看就知道了。满怀希望的我按下了“Build target”键,结果打击是巨大的:

; FUNCTION _delay1 (BEGIN)

; SOURCE LINE # 13

;---- Variable i assigned to Register R7 ----

; SOURCE LINE # 14

0000 ?C0004:

; SOURCE LINE # 15

0000 AE07 MOV R6,AR7

0002 1F DEC R7

0003 EE MOV A,R6

0004 70FA JNZ ?C0004

; SOURCE LINE # 16

0006 ?C0006:

0006 22 RET

; FUNCTION _delay1 (END)

虽说生成的代码跟用for语句是不大一样,不过我可以毫无疑问的说,这两种方法的效率是一样的。似乎到此为止了,因为我实在想不出来源程序还有什么简化的余地。看来我就要得出来这个结论了:“如果需要us级的延时精度,需要时用汇编语言。”但是真的是这样吗?我还是不甘心。因为我不相信大名鼎鼎的 Keil C 编译器居然连 djnz 都不会用???因为实际上程序体里只需要一句 loop: djnz r7, loop。近乎绝望之际(往往人在这种情况下确可以爆发出来,哦呵呵呵~~~),我随手改了一下:

void delay1(unsigned char i)

{

while(--i);

}

心不在焉的编译,看源码:

; FUNCTION _delay1 (BEGIN)

; SOURCE LINE # 13

;---- Variable i assigned to Register R7 ----

; SOURCE LINE # 14

0000 ?C0004:

; SOURCE LINE # 15

0000 DFFE DJNZ R7,?C0004

; SOURCE LINE # 16

0002 ?C0006:

0002 22 RET

; FUNCTION _delay1 (END)

天~~~奇迹出现了......我想这个程序应该已经可以满足一般情况下的需要了。如果列个表格的话:

i delay time/us

1 5

2 7

3 9

...

计算延时时间时,已经算上了调用函数的lcall语句所花的2个时钟周期的时间。

扩展阅读:单片机延时问题20问

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备

PLC(可编程逻辑控制器)和单片机是两种不同的控制设备,它们之间存在明显的区别:

关键字: 单片机 plc 控制器

Holtek隆重推出全新一代32-bit Arm® Cortex®-M0+ 5V CAN MCU - HT32F53231/HT32F53241/HT32F53242/HT32F53252。这一系列单片机带有来自Bosc...

关键字: MCU 工业自动化 单片机

Holtek精益求精,宣布推出全新5V宽电压Arm® Cortex®-M0+ 32-bit MCU系列HT32F50431/HT32F50441/HT32F50442/HT32F50452。此系列MCU经多方位升级能满...

关键字: 单片机 智能家居 工业控制
关闭
关闭