当前位置:首页 > 模拟 > 模拟
[导读]计算机芯片包含模组,模组包含逻辑门,逻辑门包含晶体管。晶体管代表着电脑的处理器里一个最简单的型态,简单说是个可以阻挡、通过信息的开关。而此信息是由比特构成,它可以设为0或者1,多个比特的组合通常代表着更复杂的信息。

从我们的历史来看,人类的科技大都建立在脑、火与尖锐的棒子上。当火和尖锐棒状物变成发电厂和核武器时,脑的大进化已经开始发生。自从1960年代来,电脑的运算能力呈献指数性的成长,使得电脑愈来愈小,同时愈来愈强大。

但是计算技术演化已经快碰到了物理上的极限,电脑元件尺寸正在趋近于原子的大小。为了说明这为什么是个问题,我们必须要先讲解一些基本知识。

电脑是由执行简单功能的简单元件所组合而成,以呈现数据,意思就是运算并控制机械。

计算机芯片包含模组,模组包含逻辑门,逻辑门包含晶体管。晶体管代表着电脑的处理器里一个最简单的型态,简单说是个可以阻挡、通过信息的开关。而此信息是由比特构成,它可以设为0或者1,多个比特的组合通常代表着更复杂的信息。

将晶体管组合后会变成逻辑门,它还是只有简单的功能,例如,一个AND门只有在输入值皆为1时才会输出1,否则就会输出0。最终组合不同的逻辑门形成了有意义的模组,比方说加法的功能模组。

一旦你能够使用加法,你也可以使用乘法,一旦可以使用乘法,基本上什么都可以做了。自从所有基本运算都比一年级的数学简单,你可将电脑想像为一群在回答基础数学题的7岁小孩。足够数量的小孩可以计算所有的东西,不论是天文物理或萨尔达传说。

然而,随着元件愈变愈小,量子力学让事情变得很诡异。

简而言之,一个晶体管只是一个电流开关。电流表示电子由一端流向另一端,所以开关就是可决定是否让电子流过的单向通道。现今的晶体管尺寸大约是14纳米,是艾滋病病毒直径的1/8,并且是是红血球的1/500。

当晶体管小到仅几个原子大的尺寸时,电子会无视阻挡将自己传送到另一端,这现象称作量子隧穿效应。

在量子世界里,物理运作方式和我们平常看到的不太一样,而传统的电脑就开始没逻辑了。我们的科技正一步步接近物理的极限,为了解决这问题,科学家尝试利用量子物理不寻常的特性中的优点,方法就是建造量子计算机。在一般电脑中,比特代表着信息的最小单位。

量子计算机使用的是量子比特,它同样可以设成0和1。一个量子比特可以是任何二阶的量子系统,像是自旋和磁场,或是单一的光子,0和1是系统中可能存在的状态,就像是光子横向或纵向的偏振。

在量子世界里,量子比特不一定是0和1这两种状态之一,它可以在他们间同时表现出所有的偏振状态,这被称作为量子叠加。

但当你想把一个光子送到滤波器做测试时,它必须决定自己是纵向或横向偏振,所以当它被观测之前,量子比特就代表着0和1之间所有可能的叠加状态,你无法预期是哪个状态。但当你测量它的瞬间,它将会塌陷为一个固定的状态,量子叠加状态改变了游戏的规则。

四个传统比特中,每个比特各自表示两种状态中的一种,这共包含了16种不同的组合,但只能使用其的一组。四个量子比特则可以同时代表着16种状态,每增加额外的量子比特,组合数将会是指数性的成长,20个量子比特就可以平行储存100万个数值。

量子比特还有一个诡异并不确定性的特性,那就是量子纠缠。

它使另一组纠缠状态的量子比特呈现与自己相反的状态,就算他们之间被分开多远都一样。这意味着只要测量其中一个纠缠态的量子比特,利用这特性就能不用观测而得知另一组结果。

操控量子比特就像是脑筋急转弯,一个普通的逻辑门有着单纯的输入,并产生一个固定的输出。量子门输入一个叠加,旋转它改变机率,输出另一个叠加。所以一台量子计算机操作部分的量子门产生纠缠,并控制机率,最后测量输出,让叠加状态崩溃后得出最后结果的0和1。

这意味着你可以将这么多种可能性同时进行运算,最终你只会测量到一个结果,而这结果只是有很高的机率可能就是你要的。所以你可能要多计算几次以检查结果。

但巧妙地运用叠加和量子纠缠,效率相比一般电脑将会是指数性的成长,所以量子计算机虽然无法取代现在的计算机,但在某些领域它们是非常优越的,其中之一就是数据库搜寻。

一般电脑再数据库中搜寻可能要搜寻每一份资料,量子算法只需要原来运算时间开根号的时间,这在大型数据库上会有着极大的差距。

量子计算机中最著名的用法就是破解信息安全机制,现在你浏览的银行邮件还是被加密系统给保护着,借由你给其它使用者不同组的公钥,来加密只有你能解密的讯息。问题是拿到公钥的人可以计算出你的密钥。

幸运的是,使用一般的电脑必须花上数年运算,不断地尝试错误才有办法解开。但对于量子计算机,由于运算速率是呈指数的增加,这可能只是小菜一碟。

另一个著名的用法就是当作模拟器。模拟量子世界非常地消耗资源,甚至是一些巨大的结构体,例如分子结构。它们通常缺乏精准度,所以为何不用真实的量子计算机来模拟量子物理环境呢?模拟量子环境可能让我们更了解蛋白质的组成,这将给我们的医学带来革新。

目前我们并不清楚量子计算机会个是专门用途的工具,还是为人类带来重大革新。我们还不清楚科技的极限在哪里,但只有一种方法可以找出答案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

业内消息,近日中国科学技术大学潘建伟、陆朝阳等组成的研究团队与中国科学院上海微系统与信息技术研究所、国家并行计算机工程技术研究中心宣布成功构建 255 个光子的量子计算原型机 “九章三号”。

关键字: 中科大 量子计算机

据业内最新消息,谷歌曝光了一款量子计算机,据说该计算机可以几秒内完成现有最好超级计算机 47 年才能完成的计算任务。

关键字: 谷歌 量子计算机

据业内信息报道,IBM 近日宣布将在其位于德国埃宁根的设施中建立一个欧洲量子计算机数据中心,供自己和研究机构以及政府机构使用。

关键字: IBM 量子计算机 数据中心

据业内信息报道,近日谷歌表示在纠正量子计算机错误方面取得巨大突破,主要表现在纠正当前量子计算机的固有错误方面,这将表示人类可能在解决量子计算最大技术障碍方面迈出了总要的一步。

关键字: 谷歌 量子计算机

现代物理学中一些最激动人心的话题,例如高温超导体和量子计算机的一些提议,归结为当这些系统在两个量子态之间徘徊时发生的奇异事物。 不幸的是,事实证明,了解在这些点(称为量子临界点)发生的事情具有挑战性。数学往往太难解决,...

关键字: 高温超导体 量子计算机

在下述的内容中,小编将会对计算机的相关消息予以报道,如果计算机是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 量子计算机 区块链计算机 计算机

以下内容中,小编将对计算机的相关内容进行着重介绍和阐述,希望本文能帮您增进对计算机的了解,和小编一起来看看吧。

关键字: 计算机 量子计算机 区块链计算机

随着技术以闪电般的速度发展,科学家和工程师现在需要比以往更快的处理速度和功能。电池建模、分子中单个原子的行为建模以及确定蛋白质的行为等复杂问题和研究课题都是此类问题的示例,即使对于超级计算机而言,这些任务也是困难的任务。...

关键字: 超级计算机 量子计算机

光子量子计算领域企业Xanadu宣布,它已经在C轮融资中筹集了1亿美元。本轮融资由Georgian领投。到目前为止,Xanadu已经筹集了2.5亿美元,使公司的估值达到10亿美元。Xanadu公司用光子方法建造量子计算机...

关键字: AN AD 光子 量子计算机

在这篇文章中,小编将对量子计算机的相关内容和情况加以介绍以帮助大家增进对量子计算机的了解程度,和小编一起来阅读以下内容吧。

关键字: 富士通 量子计算机 计算机
关闭
关闭