当前位置:首页 > 厂商动态 > 湃睿科技
[导读]随着变压器单机容量的增大,能量密度的提高,变压器的各项性能指标要求也越来越高,以应对短路事故对整个电力系统安全运行及人民生命财产造成的影响。如何提高变压器自身的抗短路能力?设计时除了依据国家标准提出的阻抗电压百分比准则,降低变压器的短路电流,还可以依据电动力的决定因素,通过仿真分析变压器的漏磁场分布,对变压器结构进行优化,进一步降低短路电动力的大小。

0 引言

随着变压器单机容量的增大,能量密度的提高,变压器的各项性能指标要求也越来越高,以应对短路事故对整个电力系统安全运行及人民生命财产造成的影响。如何提高变压器自身的抗短路能力?设计时除了依据国家标准提出的阻抗电压百分比准则,降低变压器的短路电流,还可以依据电动力的决定因素,通过仿真分析变压器的漏磁场分布,对变压器结构进行优化,进一步降低短路电动力的大小。

1 短路电动力定性分析

当变压器绕组有电流流过时,由于电流和漏磁场的共同作用,将使绕组中产生安培力,其单位长度大小决定于漏磁场的磁感应强度和导线中短路电流的乘积 ,方向由左手定则确定。变压器短路时,大额的短路电流经过变压器的绕组,会产生极大的电动力。一旦变压器的抗短路能力不够,便会导致绕组变形,导致绕组饼间、匝间的剧烈运动,引发绝缘失效,造成内部短路。同时短路电流流经绕组时,绕组损耗极大,发热严重,导致绝缘老化,轻则破坏绝缘,重则导线熔断。对此,国标及IEC用变压器的动、热稳定性进行了相应的规范。因此,变压器生产制造厂家必须在设计、原材料和工艺上采取各种措施来提高变压器的抗短路能力。

1.1 变压器的动稳定性

短路时变压器的动稳定性通常分解为轴向力和辐向力分别进行研究,从而在结构设计时分别采取措施解决这两种力作用下的稳定性问题。

依据载流导体同向相吸反向相斥,可定性判断出变压器绕组间导体的作用力是斥力。因此,径向内绕组会受到向内的压缩力,外绕组受到向外的张力;轴向上都受到向内的压缩力,如图(2)示意图所示。漏磁场与电流、绕组的布置、绕组的几何尺寸、安匝分布、铁芯结构等有关。对于如图(1)所示的磁力线,绕组等高并且沿轴向安匝平衡,但实际设计、制造、干燥过程等各种因素的作用,漏磁场通常分布不对称,短路时轴向力会迅速增大,零部件机械强度不够时,除了线圈,轴向力通过铁轭、压板等装置传递到铁芯夹件等地方,最终可能会导致变压器轴向变形。

类似于轴向力,辐向力主要由于轴向漏磁场产生。辐向电磁力使内绕组内径变小,外绕组内径变大。不对称情况下绕组圆周受力不均匀,容易产生局部失稳,形成曲翘变形。拉应力过大还会产生永久性变形,进一步造成绝缘破坏,匝间短路等破坏性影响。

1.2 变压器的热稳定性

变压器发生短路时,巨大的短路电流作用会使绕组的温度上升。当绕组中导线的温度上升并超过一定的温度时,导线的机械强度较常温下明显下降,发生软化,破坏匝间绝缘,导致变压器内部故障。对于双绕组变压器而言,低压侧三相对称短路时是最严重的短路形式。因此,在计算时,需确保最恶劣短路工况下的最大短路力临界值的抗短路能力。

1.3 提高变压器抗短路能力的措施

依据变压器动稳定和热稳定的定性分析,可看出提高抗短路能力可以从减小短路电动力、降低短路温升、提高动稳定强度三个方面入手。依据这三个物理量可以看出,降低短路电流,降低漏磁场,采用许用应力更大的导线即可以改善变压器的抗短路能力。因此,改善变压器的漏磁场分布,对漏磁场所造成的轴向和辐向磁场进行分析,改善窗口结构、安匝分布,从理论上来说,可以找到优化结构及线圈布置的机会,在改善短路电流的基础上,极大的改善漏磁场分布,提高抗短路能力。

1.jpg

图(1)磁力线分布

2.jpg

图(2) 变压器绕组受力示意图

2 短路电动力仿真分析

本文采用的仿真分析软件,是ANSYS Maxwell最新版2019 R1. ANSYS Maxwell是一款广泛用于各类电磁部件设计的、基于求解Maxwell微分方程的有限元法电磁场仿真分析软件。其设计设置、求解流程如下图(3)所示。通过电磁场仿真,获得可视化的动态场分布图、力、力矩、电感、耦合系数等电磁参数,进一步可在ANSYS Mechanical、Fluent中进行强度、噪音、热等的分析,结合多物理场进一步优化本体。Maxwell还可以自动生成ROM模型,在Simplorer中考虑本体的影响进行系统的优化设计。

3.jpg

图(3) Maxwell仿真流程

以一台三相变压器为例,采用Maxwell 2019 R1 Transient 求解器,模型如图(4)所示。内侧线圈低压,外侧线圈高压。

4.jpg

图(4) 变压器短路模型

2.1 Transient求解设定

绕组连接方式设定Y,y0连接,绕组激励为短路电流下的工频正弦函数。设定好的绕组激励如下图(5)、求解设置如下图(6)所示。

5.jpg

图(5) 变压器绕组激励

6.jpg

图(6) 求解设置

2.2 结果分析

首先反查网格、输入的正确与否,见如下图(7)、图(8)、图(9)所示,结果可用。漏磁场、电动力密度分布如图(10)、图(11)所示。铁芯材料饱和磁感应强度1.95T,可见t=0s时刻,对应于A相电流最大,A相芯柱已达饱和,A相高低压线圈间漏磁最大,漏磁云图如图(12)所示,辐向漏磁和轴向漏磁分别如图(13)、图(14)所示。类似的可以分析其它时刻另外B/C两柱的饱和情况与理论相符。轴向和辐向漏磁的仿真设置步骤如下图(15)、图(16)、图(17)所示。具体步骤如下:打开Caculator场计算器,Input一栏选择Quantity,然后选择磁感应强度B,接着在Vector栏选择Scal?,分别选择ScalarX(辐向磁感应强度分量)、ScalarY(轴向磁感应强度分量),并分别写出辐向磁感应强度分量表达式,存为Named Expression 表达式,给出一个名称例如Bx即可进行输出。同样地方法,可以输出轴向磁感应强度。

7.jpg

图(7) 网格划分

8.jpg

图(8)高压侧输入电流

9.jpg

图(9)低压侧输入电流

10.jpg

图(10)t=0s时刻磁感应强度分布

11.jpg

图(11)t=0s时刻电磁力密度

12.jpg

13.jpg

图(15) 求取磁感应矢量x(辐向)分量

14.jpg

图(16) 求取磁感应矢量x(辐向)分量

15.jpg

图(17) 输出辐向磁感应强度

2.3 定性分析与仿真对比

在Eddycurrent求解器中,可以输出窗口内漏磁场的辐向磁感应强度、轴向磁感应强度随着空间的变化情况如下图(18)、图(19)所示。图(18)、图(19)是在原副边的窗口内画一条线(如图(20)所示红色线框内的蓝色线条)线上取出的磁感应强度值。图(18)可看出辐向磁感应强度两端大中间小。图(19)可看出轴向磁感应强度两端小中间大。定性分析以绕组中心点展开,根据安匝定律,轴向与辐向磁感应强度大小变化与仿真一致。从图(18)可看出,辐向磁感应强度较小,可见横向漏磁较小。从图(19)可看出,轴向磁感应强度较大,可从设计的角度进行适当优化设计。

16.jpg

图(18) 输出辐向磁感应强度

17.jpg

图(19) 输出轴向磁感应强度

18.jpg

图(20) 原副边绕组中间的磁感应强度取值线条

3 Mechanical抗短路能力校核

辐向力对内绕组是向内的压力(压缩应力),对外绕组是向外的张力(拉应力)。辐向力的故障模式结合向内和向外的力不同,向外的拉应力以导线材料的弹性极限判断,向内的压缩力取决于材料的弹性模量和几何结构。轴向力作用下绕组的故障类型有几类,需要结合产品设计采用相应的判据。如上文所述,电磁分析可以获得空间和时间域内的电动力分布,仿真流程上,Maxwell和Mechanical在Workbench下耦合如图(21)所示。耦合方式相同.Mechanical 仿真获得形变云图、最大应力点等物理量,判据上结合动稳定和热稳定进行相应的分析和判断。

19.jpg

图(21)ANSYS Workbench平台

20.jpg

图(22)导入电磁力

21.jpg

图(23)高压线圈向外鼓趋势

22.jpg

图(24)低压线圈向内凹趋势

根据计算,低压绕组最大应力出现在最外圈的上端,为30kg/cm^2,高压绕组的最大应力出现在最内圈的下端,最大应力为87kg/cm^2,高压绕组轴向力为250N,低压绕组轴向力为3707N,均满足此次设计要求。

4 总结

本文通过三维仿真求得了电动力密度的分布。并通过二维漏磁场的仿真获得了轴向和辐向磁感应强度分布。仿真结论和定性分析相吻合,借此设计工程师可以参考漏磁场改善设计,进一步提升设计的可靠性。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

绕组系数、绕组宽度、绕线绝缘厚度、所有绕组的厚度等。此外,漏感还会受到工作频率的影响,随着工作频率的增大,漏感也会增大。

关键字: 变压器 漏感 整流电路

在电力电子与电气工程领域,逆变器和变压器都是不可或缺的重要设备。尽管它们都在电力转换和传输过程中发挥着关键作用,但它们在功能、工作原理和应用场景等方面存在着显著的差异。本文将从科技视角出发,对逆变器和变压器的区别进行深度...

关键字: 逆变器 变压器

增强负载能力:在变压器容量不变的情况下,较小的阻抗能够使得变压器能够承受更大的负载,提高其负载能力。

关键字: 功放变压器 内阻 变压器

本文中,小编将对隔离变压器予以介绍,如果你想对隔离变压器的详细情况有所认识,或者想要增进对隔离变压器的了解程度,不妨请看以下内容哦。

关键字: 变压器 隔离变压器

在这篇文章中,小编将对节约用电的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 节约用电 变压器

大型变压器是整个供电系统的核心设备,其出现故障将对供电的可靠性和系统的正常运行产生严重影响,及时发现和诊断其内部故障,是保证变压器及系统安全、经济运行的重要手段[1]。瓦斯保护是油浸式变压器的主保护之一,对变压器的匝间和...

关键字: 变压器 瓦斯 组分分析

在电子设备和实验室应用中,可调电源因其灵活的电压和电流调节功能而备受青睐。可调电源的最大电流输出是其重要的性能指标之一,对于保证电路的稳定性和安全性具有重要意义。本文将详细探讨可调电源如何实现最大电流输出,并介绍相关的技...

关键字: 电子设备 变压器 可调电源

TDK株式会社(东京证券交易所代码:6762)扩展了爱普科斯 (EPCOS) InsuGate系列 (B78541A) SMT变压器产品组合,推出两款新型元件。新元件采用锰锌 (MnZn) 铁氧体磁芯,尺寸紧凑,支持高工...

关键字: 变压器 电动汽车 耦合电容

在电力系统中,接地变压器是一种特殊的变压器,它承担着保护设备、人身安全和提高供电可靠性的重要职责。接地变压器通过巧妙的工作原理,实现了对中性点的有效接地,进而消除了不平衡电流对系统的影响。本文将详细解析接地变压器的原理及...

关键字: 接地变压器 变压器

本文将详细介绍电子元器件中的变压器(Transformer,简称TR)的原理、结构、分类、应用以及未来发展趋势。通过对变压器的深入解析,旨在帮助读者更好地理解其在电子电路中的作用和价值,为电子工程师在设计和应用中提供有价...

关键字: 变压器 电子电路 电磁感应
关闭
关闭