当前位置:首页 > 位移传感器
  • 激光位移传感器的应用领域有哪些?

    激光位移传感器的应用领域有哪些?

    现代意义上的测量不再只是依靠卷尺进行手动计算和方位测算,更为方便和快捷的测量工具就是激光位移传感器。激光位移传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它能够精确非接触测量被测物体的位置、位移等变化。可以测量位移、厚度、振动、距离、直径等精密的几何测量。 一、测量物体位置、位移变化 世界是一个不断运动变化的状态,而物体在一些时候也处于运动之中。这个时候想要知道物体所移动的距离就需要依靠激光位移传感器来支撑测量,可测量出物体具体位移的范围和移动的幅度大小。这种功能是其他测量仪都不具备的特性,激光位移传感器厂家在测量设计上面突破了以往的静止限定。 二、企业生产包装、电子元件检查 我们都知道现在企业的包装生产都是借助机器生产,对于一些罐装产品中的重量都有着明确的规定。激光位移传感器能够通过距离感应到包装的产品是否达到要求,保证产品所填充的数量合格。激光位移传感器也可以运用于读取电子元件的数值,检查出元件尺寸的精准度及完整性。 三、运用于新材料开发研究 如今世界环境不断变化,无论是自然灾害还是人为灾害都需要依靠高度精准的传感器进行感测预警。激光位移传感器专业的公司制造出来的设备广泛应用于各个领域,包括很多对光纤、高分子有机材料的开发之中。激光位移传感器作为一种传感器,它已经帮助制造出更多有益于人类生活和发展的新材料。 传感器发展到今天已经拥有位移测量的高级模式,同时运用的范围和领域也越来越广泛。自相关仪有自己的独特特性: 1、高分辨率及重复性 在一个较大的工作范围内,传感器可以保持较高的分辨率和重复性。 2、用途广泛性能稳定 传感器受被测物体的材质和表面特性影响小,不需喷涂显像粉即可对不同材质的高反射、漫反射及粗糙表面进行直接测量。(极少数特殊材质除外) 3、孔及复杂几何表面的测量 得益于传感器的同轴性,可对深孔,狭窄插槽、凹槽及盲孔进行高精度测量。 4、大范围可测角度 激光传感器的最大可测角度范围为空间170°(±85°),这一技术使得传感器可以真实还原被测物体的复杂表面的每一个微小细节,且不会对被测物体造成任何损坏。

    时间:2020-06-29 关键词: 位移传感器 激光

  • 利用激光技术测量的传感器,激光位移传感器

    利用激光技术测量的传感器,激光位移传感器

    激光位移传感器是利用激光技术进行测量的传感器,由激光器、激光检测器和测量电路组成。作为常见的测量仪器,主要针对长度、距离、振动、速度、方位等物理量的测量,还可以用于探伤和大气污染物的监测等。 工业激光位移传感器采用激光在线非接触测量物体的位移变化量,特别为工业自动化、交通、钢铁、建筑、码头等需要进行自动距离位移测量和位置控制而设计研发,具有很高的实用性。激光位移传感器的量程有几毫米到几百米不等,而且适合长期在线监测使用。激光位移传感器可以快速、准确地测量到目标地距离,测量结果可以通过各种接口传输到设备上,以便进行检测、控制等应用,同时激光位移传感器的控制也可通过计算机或其他与其相连的设备来完成。 采用精准地红色激光瞄准方式,精度高,量程大,而且具有丰富的输出接口,广泛应用于各种钢铁工业、冶金工业、汽车工业、印刷工业、食品工业等各类工业控制可实现位移,长度,尺寸,位置,高度、厚度等检测以及野外长期自动监测、工程现场检测等场合。 激光位移传感器因为是发射激光来进行检测的,所以在使用过程中有很多事项需要注意,比如:对准太阳或其它强光物体测量会产生错误结果;在强反射环境中测量较差反射表面的物体也会产生错误结果;量强反射表面会产生错误结果;透过透明物测量,如玻璃、光学滤光器、树脂玻璃,会产生不正确数据;迅速改变测量环境也会产生假数据。 武汉新特光电的这款该传感器采用了全球专利技术—锥光偏振全息技术,此技术相较于各种工业应用的标准距离测量方法明显更具优势,此传感器无运动部件所以产品的稳定和精度更好。该传感器所具有的独特性: 1、高分辨率及重复性 在一个较大的工作范围内,传感器可以保持较高的分辨率和重复性。 2、用途广泛性能稳定 传感器受被测物体的材质和表面特性影响小,不需喷涂显像粉即可对不同材质的高反射、漫反射及粗糙表面进行直接测量。(极少数特殊材质除外) 3、孔及复杂几何表面的测量 得益于传感器的同轴性,可对深孔,狭窄插槽、凹槽及盲孔进行高精度测量。 4、大范围可测角度 我们的激光传感器的最大可测角度范围为空间170°(±85°),这一技术使得传感器可以真实还原被测物体的复杂表面的每一个微小细节,且不会对被测物体造成任何损坏。 激光位移传感器具有测量精确、测量范围广、维护简便、耐用性强等优点,被广泛使用于多个行业当中。

    时间:2020-05-27 关键词: 光电 位移传感器 激光技术

  • 静磁栅位移传感器在电梯控制系统中的应用———电梯平层控制系统的简化方案

    静磁栅位移传感器在电梯控制系统中的应用———电梯平层控制系统的简化方案

     摘要:文中分析了目前电梯的控制系统,结合PLC的性能,论述了电梯控制系统的构成和工作特性。阐述了采用静磁栅位移传感器实现电梯平层控制的原理,归纳了由PLC和静磁栅位移传感器构成的电梯控制系的特点。关键词:PLC 静磁栅  控制系统 位移传感器 电梯电梯控制简介:电梯是现代建筑内关系到人民生命财产安全的重要交通工具。如何提高电梯的运行效率、降低电梯能耗以及减少机械磨损、延长电梯的使用寿命,都是非常重要的研究课题。电梯是楼层用以固定提升的成套设备,具有安全可靠、乘坐舒适、停层准确、操作简便、运输效率高等特点。它由提升曳引系统、引导系统、安全装置和电控系统组成。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;第二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择第二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC可靠性高,程序设计方便灵活。本设计在用三菱FX2系列PLC控制静磁栅位移传感器实现电梯平层控制。静磁栅位移传感器在电梯控制系统中的作用为电梯平层控制的调整,电控系统是电梯的“中枢神经”,其质量的好与坏直接影响电梯质量。客梯和医用梯都讲究乘坐舒适,而舒适感与运行时间有关。要想乘坐舒适,就要延长加、减速时间,因而使运行时间随之延长,电梯运行效率降低。所以,为了使电梯具有较高的运行效率,加减速度应该有一个合适的限度,而且变化要平稳,这就对电控系统提出了如下要求:l安全可靠,排除故障方便,在满足使用要求前提下,线路越简单越好。l噪声和振动小,选择元件要合理,电磁声不能大,安装零件的结构件要有足够刚度,且有防松措施。l能适应频繁起动、停止、调整及换向的工作要求,调速性能好,工作方式易于转换。加、减速和等速要平稳,速度曲线平滑,到站前无微动。l能实现自动平层,且平层必须准确。l能适应在较大范围内变动地提升载荷,能重载起动。根据电梯运行的特点及以上要求,电梯的运行速度应当符合图1所示曲线。平层误差应符合表1规定。电梯运行速度曲线图1Vm电梯运行额定速度 ?Vp平行爬层慢车速度表1 平层误差范围 mm高速梯快速梯低速电梯 m/s≤±5≤±10≤0.5>0.5≤±15≤±30静磁栅位移传感器简介:静磁栅位移传感器由“静磁栅源”和“静磁栅尺”两部分结合使用。“静磁栅源”使用铝合金压封无源钕铁硼磁栅组成磁栅编码阵列;“静磁栅尺”用内藏嵌入式微处理器系统的特制高强度铝合金管材封装,使用开关型霍尔传感器件组成霍尔编码阵列,铝合金管材外部使用防氧化镀塑处理。“静磁栅源”沿“静磁栅尺”轴线作无接触(相对间隙宽容度和相对姿态宽容度达50mm)相对运动时,由“静磁栅尺”解析出数字化位移信息,直接产生高于毫米数量级的位移量数字信号。充分发掘嵌入式微处理器的资源,将数据更新速度提高到毫秒数量级,以便能适应5m/S以下运动速度的位移响应。 产品综合特点:l使用寿命长:无接触检测位置及角度,避免了机械损伤,理论上无寿命极限 l抗恶劣环境:-40℃至+100℃工作温度范围,连续高粉尘、泥浆、水下及高撞击、 强振动工作环境l直接绝对型测量:直接指示位移毫米数或旋转角度数,无需换算,不怕掉电,任意定位控制l量程极长,分辨率适中:260毫米-2000米长度量程,分辨率0.2mm-1mm;l极丰富的数据接口:4-20mA、1-5V等模拟量输出,各类串并行数据接口以及 PROFIBUS等各种现场总线l安装维护方便:在保持适度间隙的条件下,无约束安装运行。 PLC控制静磁栅位移传感器实现电梯平层控制:要使电梯到达平层区域后能自动平层,必须有一套自动控制系统,即电梯的自动控制装置。该装置的控制部分是静磁栅位移传感器,以30层电梯为例,安装图如下图所示。 上图所示轿厢处于地下层上面的第一层,静磁栅源安装于电梯井道和室外层平行,每层一个,静磁栅尺安装于轿厢上,长度为1.2米,地下层安装两个静磁栅源,用于检测轿厢是否到底位和运动方向。由于电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制,而楼层和轿厢的呼叫是随机的,因此,系统控制采用随机逻辑控制。即在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应状态适时的控制电梯的运行。另外,轿厢的位置是由静磁栅位移传感器确定,并送PLC的计数器来进行控制。同时,每层楼设置一个静磁栅源用于检测系统的楼层信号。l当电梯定向上行时,静磁栅尺上行方向检测到静磁栅源,抱闸打开,电梯上行。当轿厢碰到上强迫换速开关时,PLC内部锁存继电器得电吸合,定时器Tim10、Tim11开始定时,其定时的时间长短可视端站层距和梯速设定。上强迫换速开关动作后,电梯由快车运行转为慢车运行,正常情况下,上行平层时电梯应停车。如果轿厢未停而继续上行,当Tim10设定值减到零时,其常闭点断开,慢车接触器和上行接触器失电,电梯停止运行。在骄厢碰到上强迫换速开关后,由于某些原因电梯未能转为慢车运行,及快车运行接触器未能释放,当Tim11 设定值减到零时,其常闭点断开,快车运行接触器和上行接触器均失电,电梯停止运行。因此,不管是慢车运行还是快车运行,只要上强迫换速开关发出信号,不论端站其他保护开关是否动作,借助Tim10和Tim11均能使电梯停止运行,从而使电梯端站保护更加可靠。l当电梯需要下行,只要有了选梯指令,下行方向继电器得电其常开点闭合,锁存继电器被复位,Tim10和Tim11均失电,其常闭点闭合为电梯正常下行做好了准备。下端站的保护原理与上端站保护类似不再重复。l楼层计数采用相对计数方式。运行前通过自学习方式,测出相应楼层高度脉冲数,对应30层电梯分别存入30个内存单元DM06~DM21。楼层计数器(CNT46)为一双向计数器,当到达各层的楼层计数点时,根据运行方向进行加1或减1计数。运行中,高速计数器累计值实时与楼层计数点对应的脉冲数进行比较,相等时发出楼层计数信号,上行加1,下行减1。为防止计数器在计数脉冲高电平期间重复计数,采用楼层计数信号上沿触发楼层计数。l当高速计数器值与快速换速点对应的脉冲数相等时,若电梯处于快速运行且本层有选层信号,发快速换速信号。若电梯中速运行或虽快速运行但本层无选层信号,则不发换速信号。l门区信号;当高速计数器CNT47数值在门区所对应脉冲数范围内时,发门区信号。 软件设计特点:根据电梯所处的位置和运行方向,在编程中,采用了四个优先级队列,即上行优先级队列、上行次优先级队列、下行优先级队列、下行次优先级队列。其中,上行优先级队列为电梯向上运行时,在电梯所处位置以上楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层静磁栅源存放的寄存器所构成的阵列。上行次优先级队列为电梯向上运行时,在电梯所处位置以下楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层静磁栅源存放的寄存器所构成的队列。控制系统在电梯运行中实时排列的四个优先级陈列,为实现随机逻辑控制提供了基础。采用先进先出队列,根据电梯的运行方向,将同向的优先级队列中的非零单元(有呼叫时此单元为七零单元,无呼叫时则此单元为零)送入寄存器队列(先进先出队列FIFO),利用先进先出读出指令SFRDP指令,将FIFO第一个单元中的数据送入比较寄存器。采用随机逻辑控制,当电梯以某一运行方向接近某楼层的减速位置时,判别该楼层是否有同向的呼叫信号(上行呼叫标志寄存器、下行呼叫标志寄存器、有呼叫请求时,相应寄存器为l,否则为0),如有,将相应的寄存器的脉冲数与比较寄存器进行比较,如相同,则在该楼层减速停车:如果不相同,则将该寄存器数据送入比较寄存器,并将原比较寄存器数据保存,执行该楼层的减速停车。该动作完毕后,将被保存的数据重新送入比较寄存器,以实现随机逻辑控制。结束语:采用三菱FX2系列PLC控制静磁栅位移传感器实现电梯平层控制。可实现电梯控制的智能化,电梯运行舒适感好,启动、减速、平层的舒适感不因轿厢负载的变化而变化,取得了令人满意的效果。声明:部分内容来自三菱FX2系列PLC在电梯控制系统中的应用方案价格:30层19800.00元,取代原来旋转编码器、接近开关和变频器秦 宝(武汉莹佳科技发展有限责任公司 武汉市青山区罗家路和平花苑4-2-202 430081)详情请访问:http:///Gps/product/index.htm

    时间:2019-04-08 关键词: 方案 控制系统 电梯 嵌入式开发 位移传感器

  • 控制与监测的线缆位移传感器系统

    用于控制与监测的线缆位移传感器系统     随着航空航天和飞机制造工业的蓬勃发展,线缆位移传感器(cable position transducers,ctp)或线性电位计/编码器最初是上个世纪60年代中期发展起来的,它们首先用于飞行器试飞期间对飞行器飞行操作机构进行监视。  现在的cpt技术已经是经受了考验的成熟技术,而显然它并还没有过时的迹象。一系列需要兼顾高性能和成本的应用项目将cpt用于关键控制与监视操作的基本手段,例如:  ■ delta iv导弹推力矢量系统;  ■ 军用飞机水平传感器;  ■ 柴油发动机燃料指数测量;  ■ 国际空间站环境控制系统;  ■ 民用和军用飞机飞行数据记录仪输入传感器;   ■ 物流分类与定位设备。  该技术的用途如此之广,以至于沿用的名称有各种各样,例如,线缆延伸位置传感器、线缆扩展传感器、线缆传感器、线缆延伸传感器、cet、cpt、拉线式编码器/传感器、钢缆传感器、电线传感器、电线延伸传感器和yo-yo电位计。这些名称都涉及通过一根从弹簧式线缆盘伸出并缩回且位移灵活的线缆测量位移的装置。该线缆盘连接到一个旋转传感器(见图1)。图1:cpts是如何工作的。图2:cpt与拉杆式和圆筒式差动变压器位移传感器的外形尺寸的比较。  cpt的优点  多轴能力—cpt能用来跟踪线性、旋转、二维和三维移动。具备这种能力使ctp成为测试项目以及oem应用经常选用的装置,因为在具体应用时它们的体积和安装的灵活性是其他装置无法比拟的。  安装灵活—线缆位移灵活是cpt固有的特征。它能通过一些途径满足应用的需要;而且包括使用磁铁、吊环螺栓或螺纹扣件。线缆也能借助于滑轮和软管绕过障碍物。此外,配备传感器安装基座和多个线缆出口后,使安装更灵活,不需要增加专门固定设备和适配器的支出。  安装速度快—安装灵活,所需时间一般不到2分钟。安装成本的降低在用于产品测试和研发过程中具有特别重要的意义。  体积小—世界上最小的cpt测量1.5英寸(38.1毫米)位移时,体积只有0.75平方英寸×0.38英寸(19毫米×19毫米×10毫米)。随着测量范围的提高,cpt相对小的体积的优势就更加明显,如图2所示。  重量轻—cpt是用质量轻不锈钢或高强度大拉力结构的线缆测量位移的。该特征连同通常采用的阳极化铝组件,导致产品的质量-量程比很低。轻量的特征也能提高产品用于工业机械设备应用在振动大的环境下的使用寿命。下列对比表介绍的是各种位移测量传感器的重量与范围的比较。  结构坚固—cpt的设计合理、加工要求严格,用于工业、航空航天、测试和室外恶劣环境已有30多年了,而且性能一直十分可靠。cpt的设计从机械结构和电气结构上来说都是简单的,从而提高可靠性,减少维护以及延长工作寿命。cpt的环境实验结果表明,cpt在冲击力大、高振动、高湿度、腐蚀性强等环境下工作时可达到有效的实施。  电信号输出—由于cpt可结合各式各样的旋转传感器以及相关信息处理技术,因此用户需要的电信号输出一般都能满足要求,包括:4~20ma、0-5vdc、0-10vdc、±5vdc、±10vdc、正交、rs-232、lvdt或rvdt型信号和同步或分解器型信号。  信号处理—cpt,特别是模拟电位计式cpt,对信号处理的要求通常是功率低、且方式简单。5v或更低的直流电源就能满足要求,大多数情况下没有特殊的信号处理要求。  工作温度—模拟输出cpt的工作温度范围是-65℃至+125℃,而数字输出cpt的工作温度范围是-40℃至85℃或-20℃至+100℃。按要求定制的传感器的工作温度范围更大。  精确度—采用非后冲连接和轮毂技术后,模拟输出cpt提供的线性度—补偿精确度,超过满刻度的±0.025%。例如,10英寸(254mm)量程的模拟输

    时间:2019-04-05 关键词: 系统 线缆 嵌入式开发 位移传感器

  • 磁致伸缩式位移传感器的工作原理

    磁致伸缩式位移传感器是位移传感器众多类型中的一种,具有测量精准、维护简便、使用灵活、可靠性高、稳定性好等多种优点。今天小编来为大家介绍一下磁致伸缩式位移传感器的概念和工作原理吧,希望可以帮助大家更加了解)磁致伸缩式位移传感器。  (1)磁致伸缩式位移传感器概念  磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的;该传感器的高精度和高可靠性已被广泛应用于成千上万的实际案例中。  由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。  (2)磁致伸缩式位移传感器工作原理  磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。  由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标

    时间:2018-11-23 关键词: 工作原理 位移传感器 磁致伸缩式

  • 使用涡轮流量计光栅尺位移传感器,需要注意这些问题

      (1)涡轮流量计光栅尺位移传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5) 为保证光栅尺位移传感器使用的可靠性,涡轮流量计可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。 (6) 光栅尺位移传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。 (7) 不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8) 应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9) 光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,涡轮流量计破坏光栅尺质量。    

    时间:2018-09-27 关键词: 位移传感器 涡轮流量计 光栅尺

  • CPLD 在时栅位移传感器中的应用

    智能时栅位移传感器内部基于CPLD的数字信号处理电路。电路采用双MCU+CPLD结构设计,内部嵌入 主从式两块单片机,副MCU负责数据采集与预处理工作,主MCU通过接口电路与外界实现数据交换。动、定测头感应到的微弱信号经放大、自动增益控制、滤波 和整形等预处理电路后,得到供数字电路处理的方波信号。两路方波信号送入CPLD进行处理,CPLD包括双路比相器、脉冲当量计量电路、计数电路、总线收 发三态控制电路等4个功能模块。CPLD芯片选用Altera公司的MAX7000S系列器件EPM7128SLC84,它有128个逻 辑宏单元,逻辑门数为2500门,在MAX+PLUSII软件环境下,采用VHDL和原理图输入相结合的方法进行设计。设计输入完成后,进行整体的编译和 逻辑仿真,然后进行转换、布局、布线、延时仿真生成配置文件,最后以4引脚的JTAG接口方式通过ByteBlaster下载电缆对CPLD进行在线编程 (ISP),完成结构功能配置,实现其硬件功能,制成专用芯片。为了避免器件内的设计被他人复制和取出,可通过对MAX7128S内部的一个保密位编程, 对设计进行加密。当对器件重新编程时,保密位连同其它的编程数据均能擦除和重写。动、定测头方波信号分别从DO_INPUT和 DI_INPUT端输入CPLD,采样信号INT0_OUT由定测头信号DI_INPUT反相得到,通过双路比相器获取动测头信号DO_INPUT的上、 下沿至采样时刻的相位差信号。Fai_OUT1、Fai_OUT2信号表示插入高频细分脉冲信号后的相位差信号,高频时钟脉冲由CLK端输入,通过2路带 允许端的20位同步计数器分别对插入的细分脉冲进行计数。每一个脉冲所代表的角度大小由脉冲当量计量电路来确定,用于计算脉冲当量的Ti_OUT1信号由 DI_INPUT信号二分频得到。EPM7128SLC84输出信号INT0_OUT与副MCU第12脚P3.2相连,每一脉冲下降沿触 发副MCU中断一次。通过对各信号逻辑时序的分析,可以看出:动、定测头方波信号频率为50Hz,为保证时栅位移传感器能正常工作,MCU必须每20ms 中断一次(若信号频率为400Hz,中断时间间隔为2.5ms),也就是说MCU用于处理数据的时间只有20ms。MCU做多字节除法、乘法运算时,运行 时间较长,且用于单片机与计算机间数据通信的时间就至少需要10ms,因此20ms时间MCU无法处理完全部工作。处理时间不够就会导致死机,传感器无法 工作,实践也证明了这一点。解决这一问题的方法通常是采取硬件分频,信号分频后,相应周期加倍,供MCU处理数据的时间加长。但在本设计中,无论是将动、定测头方波信号同时分频或仅将引起MCU中断的信号分频,均无法保证同时采集到正确的3个数据。基 于此,本文提出采用“软件分频”来解决这一问题,这也是采用双MCU的关键原因之一。中断信号INT0_OUT每20ms触发副MCU中断一次,每4次中 断采集一次数据,前面3次中断时副MCU通过程序判断中断次数而进行相应处理,为第4次中断时采集数据作准备,第4次中断时在中断服务程序中采集数据,包 括φ1、φ2和Ti等3个参数。其中,φ1、φ2和Ti分别代表一个信号周期内插入Fai_OUT1、Fai_OUT2和Ti_OUT1中的时钟脉冲个 数。副MCU对数据进行预处理后,通过P3.1脚触发主MCU中断,接收副MCU传送的数据,这样,主MCU每80ms中断一次,供主MCU处理数据的时 间增加为80ms,相当于4分频,但并没有改变各信号时序。这一思想在信号频率提高到400Hz或更高后仍然适用,只需对软件作少量改动即可。通过以上分析,不难看出:CPLD逻辑功能仿真波形为硬件电路和程序的正确设计与优化提供了依据,具有逻辑分析仪的功能,为设计者带来了方便,这充分体现了采用CPLD设计数字电路的优点。总 线收发三态控制电路实现副MCU在读取φ1、φ2和Ti时分时复用20位数据总线D19~D0。副MCU每读一个数据,先通过使能端EN让计数器停止计 数,再通过RD端打开三态门读取数据,读完数据后关闭三态门,并通过CLR端将计数器清零,为下一次读取数据做准备。副MCU对采集到的数据进行预处理 后,送给主MCU。图1中,副MCU的P3.0脚与主MCU的P2.0脚相连是为了实现数据传输过程中2块MCU间的通信握手,数据准备就绪后,主MCU 打开三态总线缓冲74LS244,从P0口读取数据。数据采集与预处理软件设计如前所述,数据采集与预处理在副MCU中断0服务程序内完成,程序流程图如图3所示。程序设计中采用了前面介绍的软件分频技术,流程图中φ代表不受预处理电路中整形芯片门限电压影响的准确相位角。结束语PM7128SLC84 在智能时栅位移传感器数字电路设计中取得了很好的应用效果,实现了硬件设计软件化,使用可编程逻辑器件技术避免了复杂的PCB布线,带来不仅在成本、开发 周期、可靠性等方面的优势,而且大大增强了硬件模块的柔性,通过编程来很方便地修改硬件电路结构,功耗也大大降低。但在使用CPLD器件时也发现了一些问 题,如EPM7128SLC84对信号毛刺很敏感,因此,对信号的前置处理和电路设计提出了更高要求。

    时间:2018-09-24 关键词: cpld 位移传感器

  • 位移传感器在轮缘轮廓测量上的应用

    位移传感器在轮缘轮廓测量上是怎么应用的,我国的交通运输业已经达到了尖端的水平,随着我们之前做的普通客车到现在的动车高铁,无疑不说明我国的交通运输业在迅速的增长,这离不开传感器的作用。  火车轮缘的几何状态参数影响着列车运行的速度与平稳度,对列车的安全运行十分重要。传统的检测手段较为复杂,通常是用带有游标的专用尺子来进行测量,对数据的人工读取造成测量的误差比较大,同时不能实现检测数据的数字化管理。随着我国铁路事业的发展,列车运行速度越来越快,火车轮缘状态参数的精确快速检修和数字化管理变得十分重要。轮缘检测仪采用现代传感器技术、单片机处理系统和简洁稳定的机械结构,可方便精确的对几何状态参数进行连续快速测量,实现了轮缘高度、宽度、轮辋厚度等参数测量的数字化。  轮缘高度、宽度、轮辋厚度等方面的检测用到很多传感器,而最为关注的是位移传感器,位移传感器有很多种,用在火车上车轮缘状检测是目前新型传感器技术叫做激光位移传感器,激光位移传感器可精确非接触测量被测物体的位置、位移等变化,主要应用于检测物的位移、厚度、振动、距离、直径等几何量的测量。目前用在火车轮缘上检测是的激光三角测量法,短距离的测量精度很高。可以直接把位移传感器安装在轨道上进行检测,同样也可以采用激光反射式位移传感器为测量器件激光传感器模沿直线方向扫描轮缘形状,同时记录整个轮缘数据。通过微处理器即可得出整个轮缘轮廓曲线,进而求得轮缘宽度、轮缘高度、70mm磨损量和磨损面积等。并且能把测量的数据上传计算机,生成数据库,利用先进的后处理软件对火车轮缘进行数字化管理。它不仅可以对在线运行列车测量轮对的磨损,还可以在生产线上对轮对尺寸是否合格进行分选。  交通运输的发展离不开检测技术,而仪器仪表以及传感器技术才是检测技术的核心。高速动力发展的今天,人们不仅仅希望体验到是的舒适和享受,而且跟多的希望得到是安全。传感器技术的发展会给人们生活交通带来更多的安全,我国传感器技术的发展也将带动交通运输方面在国际上拥有的一流先进技术发展。

    时间:2018-07-13 关键词: 位移传感器 轮缘轮廓测量

  • 影响位移传感器测量的干扰因素

      1、电磁感应干扰:当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。这种情况在位移传感器使用的时候经常遇到,尤为注意。   2、漏电流感应干扰:由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是位移传感器的应用环境湿度增大,导致绝缘体的绝缘电阻下降,这时漏电电流会增加,由此引发干扰。尤其当漏电流流入到测量电路的输入级时,其影响就特别严重。 3、射频干扰干扰:主要是大型动力设备的启动、操作停止时产生的干扰以及高次谐波干扰。 4、静电感应干扰:静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。 5、其他干扰:主要指的是系统工作环境差,还容易受到机械干扰、热干扰和化学干扰等等。 以上的5点,是小编给大家介绍的影响位移传感器测量的干扰因素。遇到这些干扰的情况,位移传感器在使用时就需要注意,以免由于这些干扰因素,而影响到测量的结果。      

    时间:2018-05-11 关键词: 位移传感器 干扰因素

  • 电涡流位移传感器的转速测量

      电涡流传感器是一种非接触的线性化计量工具,能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。电涡流传感器在测量过程中测量准确性会受到一定的影响,那么影响电涡流传感器测量的因素有哪些呢?下面小编就来具体介绍一下吧。   被测体材料对传感器的影响 传感器特性与被测体的电导率б、磁导率ξ有关,当被测体为导磁材料(如普通钢、结构钢等)时,由于涡流效应和磁效应同时存在,磁效应反作用于涡流效应,使得涡流效应减弱,即传感器的灵敏度降低。而当被测体为弱导磁材料(如铜,铝,合金钢等)时,由于磁效应弱,相对来说涡流效应要强,因此传感器感应灵敏度要高。 被测体表面平整度对传感器的影响 不规则的被测体表面,会给实际的测量带来附加误差,因此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻痕、凹槽等缺陷。一般要求,对于振动测量的被测表面粗糙度要求在0.4um~0.8um之间;对于位移测量被测表面粗糙度要求在0.4um~1.6um之间。 被测体表面磁效应对传感器的影响 电涡流效应主要集中在被测体表面,如果由于加工过程中形成残磁效应,以及淬火不均匀、硬度不均匀、金相组织不均匀、结晶结构不均匀等都会影响传感器特性。在进行振动测量时,如果被测体表面残磁效应过大,会出现测量波形发生畸变。 被测体表面镀层对传感器的影响 被测体表面的镀层对传感器的影响相当于改变了被测体材料,视其镀层的材质、厚薄,传感器的灵敏度会略有变化。 被测体表面尺寸对传感器的影响 由于探头线圈产生的磁场范围是一定的,而被测体表面形成的涡流场也是一定的。这样就对被测体表面大小有一定要求。通常,当被测体表面为平面时,以正对探头中心线的点为中心,被测面直径应大于探头头部直径的1.5倍以上;当被测体为圆轴且探头中心线与轴心线正交时,一般要求被测轴直径为探头头部直径的3倍以上,否则传感器的灵敏度会下降,被测体表面越小,灵敏度下降越多。实验测试,当被测体表面大小与探头头部直径相同,其灵敏度会下降到72%左右。被测体的厚度也会影响测量结果。被测体中电涡流场作用的深度由频率、材料导电率、导磁率决定。因此如果被测体太薄,将会造成电涡流作用不够,使传感器灵敏度下降,一般要求厚度大于0.1mm以上的钢等导磁材料及厚度大于0.05mm以上的铜、铝等弱导磁材料,则灵敏度不会受其厚度的影响。      

    时间:2018-05-10 关键词: 位移传感器 转速测量 电涡流

  • 位移传感器在物联网智能机器人中的应用

     随着科技的发展,机器人行业作为一个新兴热门行业而崛起,在全球高科技项目市场中倍受追捧。 而在智能机器人的控制中,传感器起了至关重要的作用。正因为有了传感器,机器人才具备了类似人类的知觉功能和反应能力。根据检测对象的不同可分为内部传感器(检测机器人自身状态的传感器,如:位置传感器与角度传感器)和外部传感器(检测机器人所处环境及状况的传感器,如:视觉传感器、听觉传感器)。 智能机器人常用传感器分布图 内部传感器: 机器人是机电一体化的产品,内部传感器与电机、轴等机械部件或机械结构如手臂、手腕等安装在一起,完成位置、速度、力度的测量,实现伺服控制。 位置(位移)传感器 常用的位置传感器(位移传感器)有直线位移传感器与角位移传感器(角度传感器)。直线位移传感器常用电位计原理直线位移传感器(电子尺),角位移传感器常用导电塑料角度传感器、磁敏霍尔原理角度传感器及光电编码器三种。 速度和加速度传感器 速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。常用光电脉冲式转速传感器与测速发电机测量速度,应变仪与伺服加速度传感器测量加速度。 力觉传感器 力觉传感器用于测量两物体之间作用力和力矩。常用半导体应力计、转矩传感器测量。 外部传感器: 早期的工业机器人是没有外部感觉能力的,而新一代智能机器人则要求具有校正能力和反应环境变化的能力,外部传感器就是实现这些能力的。 触觉传感器 微型开关是接触传感器最常用型式,其他还有隔离式双态接触传感器、单模拟量传感器、矩阵传感器。 应力传感器 应变仪常用于应力测量。 接近度传感器 超声波接近度传感器多用于远距离测量或者智能机器人超声导航系统。近距离测量需要使用体积较小的电涡流传感器或者红外线接近度传感器。 声觉传感器 声波传感器复杂程度可以从简单的声波存在检测到复杂的声波频率分析,直到对连续自然语言中单独语音和词汇的辨别。 接触式或非接触式温度传感器 常用热电阻(热敏电阻)、热电偶,此外热电电视摄像机测及感觉温度图像方面也取得进展。 滑觉传感器 利用光学系统的滑觉传感器和利用晶体接收器的滑觉传感器,后者的检测灵敏度与滑动方向无关。 距离传感器 用于智能移动机器人的距离传感器有:激光测距仪(兼可测角)、声纳传感器等。 视觉传感器 视觉传感器应用较为广泛,而且经常独立形成产品,与软件技术关系密切。

    时间:2017-11-02 关键词: 物联网 传感器 智能机器人 位移传感器

  • 位移传感器的选型及常见故障排除方法

     位移传感器的选型 位移传感器的选型,要满足下列指标的要求: 1、灵敏度方面的技术指标 对于一个仪器来说,一般都是灵敏度越高越好的,因为越灵敏,对周围环境发生的加速度的变化就越容易感受到,加速度变化大,很自然地,输出的电压的变化相应地也变大,这样测量就比较容易方便,而测量出来的数据也会比较精确的。 2、零点温度 环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示,即传感器不受压时的输入由温度变更引起的漂移。 3、带宽方面的技术指标 带宽指的的是传感器可以测量的有效的频带,比如,一个传感器有上百HZ带宽的就可以测量振动了,一个具有五十HZ带宽的传感器就可以有效测量倾角了。 4、输出方式的技术指标 数字输出和模拟输出两种方式。数字式传感器向仪表输入的是数字信号,如数量、重量等;模拟式传感器向仪表输入的是模拟量信号,如电压、电流等。 5、量程方面的技术指标 测量不一样的事物的运动所需要的量程都是不一样的,要根据实际情况来衡量。 6、极限过载 传感器能承受的不使其丧失工作能力的最大负荷。意思是当工作超过此值时,传感器将会受到永久损坏。 7、传感器增益 就是传感器的原始信号输出放大倍率。 常见故障及排障方法 直线位移传感器的工作原理是跟滑动变阻器一样的,它作为分压器使用的,它是以相对的输出电压来呈现出所测量位置的实际上的位置。 1、如果电子尺已经使用很长时间了,而且密封已经老化,同时夹杂着很多杂质,而且水混合物和油会严重影响电刷的接触电阻的,这样会使显示的数字不停地跳动。这个时候可以说直线位移传感器的电子尺已经损坏了,需要更换。 2、若电源的 容量很小,就会出现很多情况的:熔胶的运动会使合模电子尺的显示变换,有波动,或 者合模的运动会使射胶电子尺的显示波动,造成测量结果误差很大。如果电磁阀的驱动电源于电子尺供电电源同时在一起的时候,更容易出现以上的情况,情况严重 时用万用表的电压档甚至可以测量到电压的有关波动。如果情况不是因为高频干扰、静电干扰或者是中性不够好的造成的,那么就有可能是电源的功率太小造成的。 3、调频干扰和静电干扰都有可能让直线位移传感器的电子尺的显示数字跳动的。电子尺的信号线与设备的强 电线路要分开线槽。电子尺必须要强制性地使用接地支架,而且同时让电子尺的外壳跟地面良好地接触。信号线需要使用屏蔽线,而且电箱的一段应该跟屏蔽线接地 的。如果有高频干扰的时候,通常使用万用表的电压测量就会显示正常,但是显示数字就是会跳动不停的;而出现静电干扰时,出现的情况也是跟高频干扰一样的。 要证明看是否是静电干扰时,可以先使用一段电源线把电子尺的封盖螺丝跟机器上的某一些的金属短接起来就可以了,只要一短接起来,静电干扰就会马上消除掉 的。但是如果要消除掉高频干扰就很难用上面的方法了,变频节电器和机器手都经常出现高频干扰的,所以可以试一下用停止高频节电器或者机械手的方法来验证是 不是高频干扰的。 4、如果直线位移传感器的电子尺在工作的过程当中,在某一点的显示数据有规律地跳动,或者是没有显示数据的时候,出现这种情况就需要检查连接线绝缘是不是出现破损的现象,并且跟机器的外壳很有规律地接触而导致的对地短路。 5、供电的电压一定要稳定,工业的电压需要符合±0.1[%]的稳定性,例如,基准电压是10V的话, 就可以允许有±0.01V的波动变化,如果不是的话,就会引起显示的圈套波动这样的情况。但是如果这个时候的显示波动的幅度没有超过波动电压的波动的幅度 的话,那么电子尺就是正常的了。 6、安装直线位移传感器的对中性需要很好,但是平行度可以允许有±0.5mm的误差,角度可以允许有±12°的误差。但是如果平行度误差和角度误差都是偏大的话,这样会出现显示数字跳动的情况。那么出现这样的情况的时候,必须要对平行度和角度进行调整了。 7、在连接的过程当中,一定要多加注意,电子尺的三条线是不可以接错的,电源线和输出线是不可以调换的。如果上面的线接错的话,就会出现线性误差很大的情况,要控制的话是很难的,控制的精度也会变得很差,而显示很容易出现跳动的现象等等。 位移传感器种类繁多,应用领域不断扩大,同时有越来越多的创新技术被运用到传感器中,如基于 OEM 的 LVDT技术、超声波技术、磁致伸缩技术、光纤技术、时栅技术等,位移传感器技术已取得了突破性进展。由于技术的进步,使得各种传感器性能大幅度提高,成本大幅度降低,从而极大地扩展了应用范围,形成了一个高速增长的产业。

    时间:2016-12-21 关键词: 位移传感器

  • 悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

    摘要:以悬臂梁为基本构架,以FBG为敏感元件,设计了一种新型的具有温度自补偿特性的FBG位移传感器方案。对悬臂梁进行分析,推导出位移传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。 关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿 0 引言     自从1978年K.O.Hill等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG传感技术近年来引起人们极大的兴趣。在光纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG的传感机理上,依据悬臂粱结构提出一种位移传感器方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。 1 原理     基本结构原理为,图1为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任一点η处在外力F作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y时,距离固定端为的截面处的静挠度f(η):         由上式可以看出η的截面处的静挠度f(η)与梁长L和距离固定端距离η都有关系,且在L一定时,η越小,f(η)越大,在一定时,L越大,f(η)越小。     FBG传感原理为,光纤光栅在受到外界因素如温度、应力等的影响时,其光栅周期和纤芯的有效折射率会发生改变,故其中心波长总是随着外界环境参数的变化而变化,那么检测中心波长的变化量就可以反映出外界环境中应力或是温度的改变量,光纤光栅中心波长产生的漂移为:         式中,εz为轴向应变,Pe为弹光系数,a∧为光纤的热膨胀系数,a0表示热光系数,△T温度的变化量。     温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:         故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,         可以导出,可以看出,波长的漂移只和应变有关,而和温度无关,即本方案利用双光纤光栅的结构能很好地进行温度自补偿。 2 结构设计     本实验实际采用的悬臂梁结构如图2所示,当悬臂梁自由端因受力产生漂移时,由材料力学的知识可知,悬臂梁表面会发生应变,该应变会加载到粘贴在其表面的FBG光纤布拉格光栅上,从而使光纤光栅产生轴向应变。设悬臂梁自由端漂移量为y时,FBG 1的轴向应变为εz1,FBG 2的轴向应变为εz2。     由原理可知,当悬臂梁自由端位移漂移量为y时,传感器系统总的波长漂移量为:         式(7)为应变和波长漂移量的传递关系。 3 实验研究     位移传感器的精度与量程同时受悬臂梁主梁长度和光纤光栅在主梁上的位置的影响。用游标卡尺定标,精度为0.02mm,每次使悬臂梁自由端变化1mm,分别测量出悬臂梁上下两个表面所粘贴的FBG的波长漂移量,经过差分计算,拟合出位移与FBG中心波长漂移量的关系式。     采用游标卡尺(精度为0.02mm)和FBG D-210型便携式光纤光栅解调仪(精度为1pm)对该仪器的输出光波波长和悬臂梁自由端位移量之间的关系进行测量。温度计(精度为0.1℃),用来测量环境温度。以下对位移传感器定标时的环境温度为12℃。     进行了六种条件下的测量,分别得到其定标曲线以及在线性区间的拟合曲线,并得到曲线拟合方程、传感器线性传导方程以及各自的线性相关系数与残差。     (1)位移传感器悬臂梁长10cm,光纤光栅距离悬臂梁自由端距离为5cm;     (2)位移传感器悬臂梁长15cm,光纤光栅距离悬臂梁自由端距离为5cm;     (3)位移传感器悬臂梁长15cm,光纤光栅距离悬臂梁自由端距离为10cm;     (4)位移传感器悬臂梁长20cm,光纤光栅距离悬臂梁自由端距离为5cm;     (5)位移传感器悬臂梁长20cm,光纤光栅距离悬臂梁自由端距离为10cm;     (6)位移传感器悬臂梁长20cm,光纤光栅距离悬臂梁自由端距离为15cm;     通过对实验得到的定标数据进行处理与总结,得到本方案位移传感器的传递函数及其线性范围如下表所示:     从表中可以看出,此位移传感器的线性区间最大为16mm,线性相关系数最好可达到0.9995;在悬臂梁长度一定时,光纤光栅越远离悬臂梁自由端,其灵敏度越高;当光纤光栅距离悬臂梁自由端的距离一定时,悬臂梁越长,其灵敏度越低。 4 结语     本传感器方案结构简单、线性度好、抗外界干扰能力强。最大线性区间为16mm,线性相关系数最好可达到0.9995。但光纤光栅位移传感器的灵敏度与线性度不能够同时达到最好,使用时可以根据实际需要兼顾考虑,此方案和实验结果有很好的实用性与使用前景。

    时间:2013-08-21 关键词: 温度 位移传感器 补偿 光纤光栅

  • 基于AD598的位移传感器的误差研究

    引 言 在信息采集系统中,传感器通常处于系统前端,即检测和控制系统之首,它提供给系统处理和决策所必需的原始信息,因此,传感器的精度对整个系统是至关重要的。在位移、速度及加速度的测量中,经常使用差动变压器式传感器,原因是其灵敏度高、线性好且有配套集成电路,但传统的LVDT传感器对工作电源的稳定性和精度要求太高,且电路板大都由分离元件搭接而成,极易产生松脱和受潮变质现象,从而影响传感器的使用寿命和整体性能。本文介绍一种基于AD598信号处理芯片的LVDT直线位移传感器,并通过实例对其误差和精度进行探讨。 1 基本原理 差动变压器式传感器是利用线圈的自感或者互感的变化来实现测量的一种装置,它的核心是可变自感或可变互感。本文采用的变气隙式差动变压器式电感传感器是利用互感的变化来工作的。 1.1 基本结构及工作原理 上下2只铁芯上均有1个励磁线圈和1个输出线圈。上下2个励磁线圈串联后接交流励磁电源电压Uin,2个输出线圈则按电势反向串联。忽略高阶无穷小量,当ωR(ω为交流励磁电源电压Uin的频率,R为励磁线圈的等效电阻)时,可推导出     式中:Uin为励磁电源电压(单位V);Uout为输出电压(单位V);N1,N2分别为励磁线圈和输出线圈的匝数;△δ为轴偏移平衡位置的距离(单位mm);δ占为轴处于平衡位置时的气隙大小(单位mm)。 当轴处于中间位置时,δ1=δ2=δ,励磁线圈中产生交变磁通φ1和φ2,在输出线圈中便产生交流感应电势。由于两边气隙相等,磁阻相等,所以,φ1=φ2,输出线圈中感应出的电势E21=E22,由于次级是按电势反向连接的,输出电压Uout=0。当轴偏离中间位置时,两边气隙不等(即δ1≠δ2),输出线圈中感应的电势不再相等(即E21≠E22),便有电压Uout输出。Uout的大小及相位取决于轴的位移大小和方向。 1.2 输出特性方程 设差动变压器原边激励电压为Ep、角频率为ω、电流为Ip、电感为Lp、等效电阻为Rp。副边电压分别为E21、E22,互感为M1、M2。若忽略磁滞涡流及耦合电容的影响,可以得出:     2 传感器测量电路 AD598是由Analog Device推出的新型LVDT专用信号处理芯片,原理图如图2所示。由图可知,该芯片主要包含两部分:一部分为正弦波发生器,它的频率及幅值均可由少数外接元件确定;另一部分为LVDT次级的信号处理部分。通过这一部分产生一个与铁芯位移成正比的直流电压信号。AD598可驱动高达24 V,频率范围为20Hz~20 kHz的LVDT原边线圈,又可接受最低为100 mV的次级输入,所以适用于许多不同类型的LVDT。 3 测量系统误差分析 测量系统的误差按来源也可分为固定误差和随机误差两大类。 3.1 固定误差 固定误差指差动变压器结构(加工精度)和材料(磁滞涡流)所造成的误差。这是系统论证时要结合测量的精度要求及经济指标综合考虑的。系统一旦确定下来这些因素一般是不能改变的。 3.2 随机误差 随机误差按误差来源可以分为由激励源的波动引起的误差和由相敏检波引起的误差。由于AD598把振荡器,LVDT和相敏解调器封装在一起,不但提高了产品的集成度,而且大大减少了外围元件的个数,使传感器的性能得到大幅提高,因此,在本文中就不对相敏检波引起的误差进行推导了。 3.2.1 激励源幅度波动引起的误差 由式(3)可以看出当Ep、ω、Lp、Rp为常数时,E2正比于△M。差动变压器是非闭合磁路,而且铁芯长度远小于线圈长度,所以△M正比于铁芯位移,即E2正比于铁芯位移。当铁芯在某一位置固定,输出电压E2也应是定值。但Ep或ω有变化,虽然铁芯位置没变,输出电压E2却发生了变化,这就是激励电压和频率不稳定引起的误差。E2是Ep的一次函数。将式(3)对Ep微分得到:     将式(4)除以式(3)得: dE2/E2=dEp/Ep即在其它条件不变的情况下,激励源的误差即是差动输出的误差。 3.2.2 激励源频率波动引起的误差     式中:Qp=ωLp/Rp为差动电压器原边品质因数,其值越大因ω波动引起的误差越小。 4 误差与精度的测定 以CWZ-23F差动变压器为例,标定后用光学测长仪给定输入电压,用4位半数字电压表测量输出电压。原文位置         精度=β×标准差=3×1.106≈3.32(μm) 可以认为系统精度为3.32μm。此时置信概率为99.73%,完全可以说明系统的情况。 5 结束语 AD598将一个高精度的正弦波发生电路和差动变压器信号调节电路的绝大多数功能集成在一块芯片上,减小了电路的体积,简化了电路的设计和调试。

    时间:2013-01-23 关键词: ad 位移传感器 误差 598

  • 基于单片机的磁致伸缩位移传感器的应用

    引言   磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被磨擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下(如容易受油溃、尘埃或其他的污染场合),也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中,但这种测量方法存在一些不足之处:①模拟信号抗干扰能力有限,不能远距离传输;②由于电路转换引入噪声,使其测量精度不高;③信号互换性差,还需要昂贵的A/D互换设备等。利用单片机及其外围电路进行较好的处理,实现了多点高精度测量,并通过RS-485串行通信实现远距离传输及接入工业监测网。另外,由于采用PIC低功耗单片机及其他低功耗芯片,优化电路结构,使系统功耗大大降低。   1 磁致伸缩位移传感器简介   1.1 传感器的结构   磁致伸缩位移传感器由两部分组成:一部分是套有活动磁铁的测量杆;另一部分是位于测量杆上端的测量电路。磁致伸缩位移传感器的结构如图1所示。图1中,磁致伸缩位移传感器主要包括以下几部分:波导丝、保护管套、移动磁铁、电路板部分。测量管是整个传感器的核心传感部分,这一部分又包括:偏置磁铁、波导丝、保护管套、末端衰减阻尼装置、非接触磁环、转换器输出。   1.2 传感器的工作原理   磁致伸缩线被安装在不锈钢管内,钢管外侧可自由滑动,电子装置中的脉冲发生器产生电流脉冲(起始脉冲)并沿波导线传播,产生的磁场与活动磁环固有的磁场矢量叠加,形成螺旋磁场,产生瞬时扭力,使波导线扭动并产生张力脉冲(波导脉冲),这个脉冲以固定的速度沿波导传回,在线圈(转换器)两端产生感应脉冲(终止脉冲),通过测量起始脉冲与终止脉冲之间的时间差就可以精确地确定被测位移量。如图2所示。因为张力脉冲在波导管上的速度恒定,用测得的时间差乘以此速度,得出磁环的位置。这个过程是连续不断的,每当磁环运动时,新的位置就会被感测出来。   1.3 信号特点及存在的问题   目前,要想直接测量传感器起始、终止脉冲的时间间隔,得到准确的位置量,不易实现。现阶段采用的方法是,把两个脉冲信号的时间间隔转换为正比于磁环位置的PWM信号,然后以电流环的形式输出。在实际测量过程中,传感器内电流脉冲和感应脉冲会对输出信号产生一定的干扰;并且传感器本身的磁性材料感应的磁场与波导管内的电流之间不可避免地会产生电磁干扰(EMIElectroMagneticInterference),使得测量所得的输出信号有一定程度的畸变,如图3所示,即是将传感器的电流环输出信号转换为电压信号得到的波形。另外,如果需要在同一个系统中同时使用几个磁致伸缩位移传感器进行位移测量时,传感器相互之间也会有干扰。这些干扰信号的存在使得控制系统的动、静态性能不好,对精度高、响应频率快的控制系统而言,其影响程度是很明显的,会影响到系统的稳定,必须予以消除。设计一个基于单片机的传感器信号处理系统,将处理后得到的稳定的输出信号,以数字信号的形式直接通过远程通信传送给计算机进行控制,使得该类型磁致伸缩位移传感器输出信号稳定、精度高、传输距离远,与控制系统接口简单、互换性好、实用性强,使传感器更具智能化,整体性能得到极大的优化提高。   2 在位移测量中的应用   2.1 系统结构   磁致伸缩位移传感器位移测量系统的硬件结构如图4所示。由于磁致伸缩位移传感器采用符合工业控制标准的4~20mA电流环输出的形式,故需要先把传感器的输出电流信号转换为电压信号,再采集出来进行A/D转换,然后输出给单片机进行信号处理以及通信处理,最后将理想的传感器信号以二进制方式传送给液晶示屏和PC机。传感器的电路是由敏感元件头、接收电路、信号整形电路、参数校正输入电路、计算机处理电路、显示电路、测量参数输出电路等组成。   2.2 微处理电路   单片机选用ATMEL公司基于CMOS工艺的8位微处理器AT89C4051,与MCS-51产品系列的指令完全兼容,片内含有4kb的FlashEPROM,它最突出的特点是芯片体   积小,只有20个引脚,特别适合于小型化系统的设计。另外,AT89C4051价格便宜,性价比较高。   2.3 信号整形电路 采用基于抽取被测信号特征量的滑动数字滤波算法。如图3所示,就是磁环在静止状态下,传感器输出的模拟信号波形。可以看出,在测量稳定值上叠加有一个频率较高的干扰信号存在,其最大峰-峰值约为25mV,周期为440μs。如果直接将单次测量值采样传送给控制器,在高精度的测量场合下,随机得到非正常测量值的几率是比较高的,最大误差为12个LSB。因此,最好是对某一位移量进行连续的多次测量,得到一组N个测量值,并使这组测量值包含一个干扰周期,便从中获得一个能够代表正确值的测量值。信号整形电路的结构包括测量运算放大器、光电耦合器;功能是对测量放大信号整形后送计算机。89C4051是系统硬件实现数字化处理的核心部分,它的主频工作在11.0592MHz,包括有一个外围复位电路。主要用于完成控制A/D转换、信号处理、向主机和LCD以串行方式发送数据等几个方面的功能。用单片机的P3口作为A/D转换及通信的控制线。在读取A/D转换值时,直接用PI口分两次读入12位A/D转换值。   图5为使用了数字化处理系统传感器的磁环分别处于静态和动态时的测量特性犤4犦。图5(a)表明系统有良好的测量精度和稳定性,误差只有1个LSB;图5(b)表明本系统具有良好的动态测量特性。   2.4 参数输入矫正电路   矫正电路是由MAX25C045、键盘和选择开关组成,功能是对传感器的零位、满量程进行调整,并对波导电流脉冲传递速度设定和参数存储。   2.5 显示电路   主要根据LCD显示器的结构与原理,把要显示的数字对应的码转换写出,即写出对应的段选码表,从显示主程序中调用该表,就可以在LCD上显示出传感器的输出变化值。   2.6 测量参数输出电路   数据输出包括12bit高速D/A转换芯片MAX5302及运算放大器输出0~5V,0~10V,0~10mA,4~20mA的测量数据;二进制数据输出包括485接口芯片MAX1428输出二进制测量数据,数据传递距离可达1000m以上。   3 磁致伸缩位移传感器的发展方向   MTS公司正在研制的TemposonicsER型位移传感器代表了磁致伸缩位移传感器的发展方向。TemposonicsER型位移传感器是磁致伸缩测量原则,利用对超声波(传感器产生的扭转波脉冲)精确的速度、时间测量计算出目标位置。传感器通过处理信号转换过程将测量结果直接转换为标准输出量。磁致伸缩位移传感器已向着测量距离长、测量精度高的方向发展。未来采用模块化设计、模块化组装、数字化输出、抗强电磁干扰和温度检测补偿等技术,将使该类传感器成本大幅下降,性能显著提高,应用范围更加广泛。为满足传感器工程化、实用化要求,传感器在最恶劣的工业环境下也具有耐用的特点,无论所测的目标位置困难与否,传感器都将根据实际情况进行参数调整并配置相应的结构以适合应用系统。传感器的结构和封装技术也有待于突破,并实现机械设计和电子装置的有效综合。   4 结束语   采用单片机芯片和EIA RS-422/485国际串行数据传输标准电路,内置电子模块采取超小型电子元件贴面焊接,能使新型磁致伸缩传感器更加稳定、可靠,传感器的数据传输距离大大加长,而且可与PLC、计算机等直接通讯,节省了昂贵的变送器、A/D转换,从而使用该磁致伸缩传感器组成的测控系统更加方便、稳定,成本也大大降低。 在提高波导丝的弹性模量和机械强度的同时保证其稳定的伸缩系数,是研制敏感元件的关键,也是开发磁致伸缩位移传感器相当重要的一环,高精度的时间检测技术和抗恶劣环境的封装技术也不容忽视。磁致伸缩位移传感器的研究有着广阔的市场前景。

    时间:2012-12-26 关键词: 位移传感器 单片机 磁致伸缩

  • 新型位移传感器原理及优势

    新型位移传感器的测量原理是基于RLC耦合电路产生的,是电感式原理的革新技术。不像电位计式或磁致伸缩式传感器的检测原理,这种测量方式具有相当大的优势。传感器集成了信号发射器和接收器线圈系统,它们以印刷线圈的形式被精确地印制在电路板上。发射信号线圈由高频交流磁场激活并与位置块(谐振器)相互感应产生一个RLC的感应电路。因此,谐振器与接收线圈形成电感式耦合。在布有接收信号线圈的位置,电压的变化由谐振器与线圈的感应而引起。这些电压即为传感器的测量信号。为了使测量更加灵活和快速,传感器包含了一个粗略的和一个精确的测量线圈系统。前者负责粗略定位谐振器的位置,而後者负责精确定位。双管齐下保证了它的精确测量。新型的检测原理不但保证了传感器的精度,而且能够使传感器在非接触的方式下工作,在允许范围内,即便位置块发生偏移或者抖动,也不会对传感器输出产生任何偏差D-KB-50光栅测微传感器,是以高精度光栅作为检测元件的精密测量装置。与数显表配套,组成高精度数字化测量仪器。可以代替机械式千分表、扭簧比较仪、深度尺、电感测位移和精密量块,配以适当的转换器,可将温度、压力、硬度、重量等参数转换为数字量。用于自动化大生产中在线监测及精密仪器的位置检测。其优点是测量值数字化显示,精度高,稳定可靠,读数直观准确。亦可把测量数据输入计算机打印出测量数据或绘出曲线。 这款传感器还具有双层电路板的特点,第一层电路板负责感应信号的发送和接受,位于传感器感应面。在其下方是第二层电路板,印有接收信号处理器部分,是负责将信号进行数模转换再形成输出。两层电路板设计使得传感器的盲区极小,是目前市面上盲区最小的一款直线位移产品随着科学技术的发展,不仅对某些精密零件的尺寸、粗糙度、形位和位置公差的要求都非常高,而且对它们的检测速度要求要快、效率要高。一些传统的检测手段和圆度仪已不能满足这些高精度、高效率、高可靠性的精密零件的检测要求。为实现精密零件形位和位置公差的高效、快速、可靠地检测,需要运用当今高科技的检测手段。基于激光位移传感器的光电检测手段是包含光学技术、机械技术、微电子技术、计算机技术、信息技术、自动控制技术和通讯技术的当今最新的高科技一种检测方法。而且它具有以下优点: 可实现运动零件、非接触式的连续、快速的在线检测。FTM系列激光位移传感器是北京飞拓信达激光技术有限公司的最新产品,测程大,距离最远200m,精度高,精度最高1mm。 FTM系列激光测距传感器还具有丰富的工业数据接口(RS232、485、422、0-10V,0-5V,4-20mA等),超强的抗干扰能力,广泛的应用于钢铁工业、冶金工业、汽车工业、印刷工业、食品工也等各类工业控制和各类野外监测、检测现场。FTM系列激光位移传感器器维护和保养清洗及保持干燥。吹掉镜面上的灰尘。请勿用手指接触镜片。仅适用干净的软质布料擦拭,若有必要可用纯酒精或水粘湿布擦拭。若不小心把仪器弄湿,不要放在阳光下暴晒,应当风干。若长时间不用请关闭电源,以免影响寿命。   激光位移传感器使用注意事项:  使用本仪器时不要撕掉或损毁仪器上的警告标签。  避免眼睛遭受直接的激光辐射,这样会导致眼睛瞬间的视觉盲区。  请勿在小孩周围操作仪器或让小孩自行操作,避免伤害眼睛。  不要试图改变本仪器的性能,可能导致严重的激光辐射伤害。不要维修或拆解本仪器,非专业人员维修可能导致严重的激光辐射。 与激光干涉仪相比,CCD激光位移传感器的优点在于:激光干涉仪利用干涉现象,以波长作为位移测量的单位基准。而CCD激光位移传感器不利用干涉现象是以“激光腔镜移动半波长、激光频率移动一个纵横间隔”为工作原理的,激光器自身变成了位移传感器,不利用干涉现象,但以波长做尺子,比激光干涉仪简单得多,造价低得多。 与电传感器相比,CCD激光位移传感器的优点在于:它是非接触式的检测,可以完全消除零件的径向跳动对测量结果的影响。而且通过对各个传感器标定,并采用最小二乘法线性拟合标定数据,进一步提高系统的测量精度。从而克服了传统圆度仪的测头接触式测量带来的弊端。 线性度好,因为“激光腔镜移动半波长,频率移动一个纵模间隔”的规律在任何激光腔长下都成立,在任何测量范围内都成立,它没有原理上的非线性。 有较高的分辨率和精度。对于633nm波长He-Ne激光,八分之一波长是0.079mm!更多的位移传感器资料报价最新资讯尽在现代豪方传感器之家,现代豪方传感器之家汇集全球传感器资讯,为您提供最新的传感器资料报价资讯及相关技术,为您的采购运作真正的达到省时又省钱,足不出户就可以一览全球各种传感器最新资讯,让您的企业真正进入高效运作状态!

    时间:2012-09-19 关键词: 原理 位移传感器

  • 磁致伸缩线性位移传感器在风力发电机组上的应用

    引言: 风能是一种可再生的、可预测的、清洁型能源。风电场可快速建成,可为全球最大的、增长最快的经济发展地区提供能源独立性。经预测,我国拥有250GW的陆地风机和750GW海上风机的装机潜力,并在3~5年的时间里便可能成为全球最大的风电市场,我国正着手建立一个发展风电产业的平台。预计经过10~15年的准备,大约在2020年前后,使得风电能成为火电、水电之后的第三大常规发电电源,至少达到装机容量7000万千瓦,积极创造条件实现1亿千瓦,占届时发电装机容量的10%(08年仅占0.4%)。国家发改委也宣布,中国政府将拨款2650亿美元用于进一步发展中国的可再生能源。这相当于中国国民生产总值(2006年)的十分之一。 国家财政部发布了《风力发电设备产业化专项资金管理暂行办法》,明确了中央财政安排风电设备产业化专项资金的补助标准和资金使用范围,并将对风力发电设备制造商给予直接的现金补贴,对兆瓦级整机厂商,给予前50台机组600元/千瓦的补贴。在国家政策支持和能源供应紧张的背景下,中国的风电设备制造业也迅速崛起,已经成为全球风电最为活跃的场所。     一、液压变浆系统对位移传感器的需求: 风力发电机组需要根据风速来确定桨叶的角度,通过改变桨叶的角度,来改变桨叶转子的转速和功率,进而获得稳定的输出功率。桨叶旋转角度在0°到90°之间,在桨叶位于做功位置时,桨叶最大的面积几乎是朝着风向的,着风面积最大。当利用桨叶刹车时,桨叶的前端是是朝着风向的,着风面积最小,并受到旋转阻力,使风机转速逐步减小至停止。桨叶角度调节的执行机构有电机驱动和液压驱动两种方式,当采用电机驱动时,直流电机和一个齿轮箱配合工作,带动调浆轴承,使桨叶的角度改变。当采用液压驱动时,需要采用三个独立的液压油缸,分别控制三个桨叶的桨距角。两种驱动方式都需要传感器来实时监控桨距角,当采用电机驱动时,可以通过测量角位移来间接测量桨距角,当采用液压驱动时,可以通过测量线性位移来测量桨距角。 目前国内大多数风机制造企业采用电机驱动方式,只有少数企业采用液压驱动方式,而丹麦的风机制造企业普遍采用液压驱动方式,其液压变桨技术已经有超过25年的历史,几乎所有的丹麦风机制造商都从丹麦的液压变桨技术中获利。从技术的角度比较这两种变桨方式,液压变桨在环境的适应能力、维护成本等方面具有较大的优势,其可以在零下30度的环境下正常运转,特别适合高原、气候寒冷的恶劣环境,采用电机变桨的风机需要定期齿轮润滑油,维护成本较高,尤其是安装在海上的风机。此外,液压变浆的风机,在性能上都具有领先优势,包括较大的扭矩输出、较短的启动时间等。 在液压变浆系统中,测量液压油缸活塞行程的线性位移传感器扮演着十分重要的角色,而磁致伸缩线性位移传感器凭借其在测量精度、可靠性、环境适应能力等方面的综合素质,成为了各行各业液压缸行程测量位移传感器中的佼佼者,磁致伸缩线性位移传感器已经被大量的使用在风力发电领域。 二、磁致伸缩线性位移传感器介绍: 磁致伸缩线性位移传感器,是基于磁致伸缩原理用于测量线性位移的一种传感器,主要由磁致伸缩敏感元件(波导丝)、电子电路、保护外壳、非接触磁环组成,内部结构如图一所示。当传感器工作时,电路产生一个“起始脉冲”,此脉冲沿着波导丝传输,同时产生一个沿着波导丝方向的螺旋磁场,当此磁场与非接触磁环的磁场相遇时,波导丝产生磁致伸缩效应,即产生一个机械波沿着波导丝传向电路,此机械波以恒定速度V传输,电路部分有一个拾能机构将此机械波转换成一个微弱电信号IEo,经过放大后得到一个“终止脉冲”,通过计算得出“起始脉冲”与“终止脉冲”之间的时间差T,因此位移值L即等于VT,原理如图二所示。     磁致伸缩技术应用于位移传感器已有50年的历史,康宇公司于1997年引进了磁致伸缩线性位移传感器技术和生产线,将此技术带入了中国,数以万计的磁致伸缩线性位移传感器应用于国内自动化控制领域。 经过十余年的研究与生产的经验,康宇公司已经掌握了磁致伸缩线性位移传感器技术,能够为国内外客户提供各种结构、各种电气信号的磁致伸缩位移传感器产品,并具有了为客户定制特殊产品的能力,康宇公司的KYDM-L系列位移传感器在风电领域大量使用,基本外形结构如图三所示,内置安装于液压缸如图四所示。     图三 KYDM-L系列磁致伸缩线性位移传感器结构图     图四 液压缸内置安装结构图 三、机械盘式煞车对位移传感器的需求: 风力发电机组的有两种煞车方式,一种是气动煞车,一种是机械煞车,一般风机都会同时采用上述两种煞车方式,两种煞车装置的结合可以彻底保证风机在各种情况下的正常工作。即使在紧急情况下也能使风机不遭到损坏。气动煞车是由风机的浆距角调节系统实现的,在正常停车的情况下,变桨系统将桨叶驱动到空载位置,使桨叶转子逐渐停转,在紧急情况下,每一个桨叶分别由一个独立的蓄电池组直接通过变矩控制器供电煞车。作为气动煞车的辅助手段,加入了机械盘式煞车系统,它被安置于风机的高转速区段,在停机检修时,气动煞车将风机停稳后,用这个机械盘式煞车将风机煞车。气动煞车在制动时会在发电机齿轮箱上产生巨大的制动扭矩,如果在机组停机维修时也依靠它来维持制动状态,则会产生额外应力和不必要的摩损,由于这个原因,必须将系统紧急制动操作和维护制动操作分开。当转子停止在预定位置时,转子被锁紧销锁定,传动链制动器此时可以打开。从而,制动器可释放负载,否则负载将作用在传动系上,而影响整个风力发电机组的使用寿命。锁紧销的动作是否可靠到位,需要通过位移传感器来进行监测,所以在大多数的机械盘式煞车系统上的锁紧销都需要安装位置传感器,国内某风机厂家率先采用了康宇公司的KYDM-L系列磁致伸缩线性位移传感器,用于锁紧销活塞行程监测,大大提高了锁紧销的安全性,图五为安装了磁致伸缩线性位移传感器的锁紧销,图六为安装了锁紧销的液压盘式煞车系统。     图五 锁紧销     图六 液压盘式煞车系统 结束语: 随着国内风力发电机组的制造水平的不断提高,液压变桨系统凭借其在性能、环境适应能力、维护成本等方面的优势,必将得以广泛应用。机械盘式煞车锁紧销方面,磁致伸缩线性位移传感器的应用显著提高了锁紧销动作的可靠性,进而提高了整机运行的安全性。 康宇公司不单为国内风机企业提供KYDM-L系列磁致伸缩线性位移传感器,还凭借多年的传感器、变送器的经验,针对机械盘式煞车的煞车片磨损程度测量,推出了微位移开关产品,经过部分客户的测试、使用,该产品在功能、性能、可靠性上都达到了国内先进水平。 大力发展包括风电在内的可再生能源,是抢抓世界新一轮能源革命先机的必然要求。鼓励风力发电,不仅能做大做强风电产业,而且能改善我国能源结构,大大减少温室气体排放量。我国风电如何趁势而上?当务之急,就是加强技术创新,降低运营成本真正走出一条创新与高水平发展的新路来。我们希望国产传感器在风力发电机上的应用可以为此创出一条路来。”

    时间:2012-09-07 关键词: 传感器 位移传感器 风力发电 线性 磁致伸缩

  • 位移传感器该怎么选用

    物体的移动在现实生活中是很常见的,平时我们不会去关注物体移动的量,但是在有关工业,水利或者液位计量的控制等方面都有必要知道那个变化的量是多少。科学测量位移的变化用到的是位移传感器。 所谓的位移传感器是一个系统设备,作为测量的器件位移传感器在许多应用上起了关键的作用。它被应用于测量机械位移的仪表,以及工业加工过程机器变化的位移量。位移传感器按照信号输出可分为模拟式位移传感器和数字式位移传感器。平时我们见到的电阻式电容式和电感式涡流式等这类都是模拟式位移传感器,它们有统一的特点是在结构上简单。而相对于数字式位移传感器是将测量的位移变化量输出转化为数字直接读取,相对于模拟式位移传感器还是比较复杂一些,但是它的优点是测量的精度是比较高,更够更加准确的读取测量的位移变化量。 位移传感器在检测方面有着较高的精确性要求,如对环境温度方面的恒定要求,对运动机构的精确控制要求等。而目前就为检测位移时传感器的安装问题,研发者们开发出了激光位移传感器,它采用回波分析原理来测量距离以达到一定程度的精度。传感器内部是由处理器单元、回波处理单元、激光发射器、激光接收器等部分组成。目前在位移传感器生产行业里,位移的检测距离是最为热门的话题。也许测量位移不是最终目的,而位移的变化大小和需要的测量精度高低等一系列问题都是要对应到什么样的应用上去。 位移传感器购买者需要去了解位移传感器的工作原理和位移传感器的安装方法,从而懂得如何去选型。位移传感器和其他传感器类似是把现实中看到的变化量最后转换为电信号。一般根据位移的变化大小和用户需要的精度去决定选用什么传感器,考虑好它的误差,考虑好它的行程距离对应用户的应用环境是否对数据采集有影响等等。同样位移传感器是敏感器件,在购买的时候就要告诫使用的注意事项,使得传感器有着更长久的使用寿命。

    时间:2012-09-05 关键词: 位移传感器

  • 拉绳位移传感器在成槽机上的应用

    20世纪50年代末开始在建设工程上出现成槽机现在人们也叫做开槽机。主要应用在施工地下连续墙时由地表向下开挖成槽的机械装备。成槽机对垂直度和深度的检测相当精准。而位移传感器在其中就起着决定性的作用,利用超声波监测仪检测垂直度,而利用位移传感器检测的则是深度。 成槽机和挖掘机类似,同样是可以实现深度测量。但是挖掘机能利用几个角度传感器的去实现挖掘角度的测量,成槽机因为基本上是垂直向下进行挖掘,即使去使用多个角度传感器去实现的话也是相当的麻烦。成槽机上面测量深度用到的传感器基本上只有两种激光位移传感器和拉绳位移传感器,相比而言激光位移的精准度并不是那么理想。拉绳位移传感器目前在成槽机上的使用是很普及的。成槽机臂顶部有一个圆盘,圆盘侧边安装上拉绳位移传感器,钢丝绳下降多少圆盘转多少刻度,传感器就记录下来,转换成深度数据,而且使用起来是相当的方便。 目前拉绳位移传感器在成槽机上的使用反映出一些问题就是很容易坏掉,主要的原因是由于转盘不能固定,拉绳位移传感器长时间的工作会经常性的碰撞从而使他的效果慢慢的变差,这个问题也是目前拉绳位移传感器在成槽机上使用用户反映最多的问题。拉绳位移传感器安装在固定位置上,拉绳缚在移动物体上。拉绳直线运动和移动物体运动轴线对准。运动发生时,拉绳伸展和收缩。一个内部弹簧保证拉绳的张紧度不变。带螺纹的轮毂带动精密旋转感应器旋转,输出一个与拉绳移动距离成比例的电信号。测量输出信号可以得出运动物体的位移、方向或速率。目前拉绳位移传感器也将一直在改进这一个缺点,在这改进之前我们安装的时候是需要注意一些技巧的,首先要保证的是拉绳位移传感器的固定一定要牢固,同时要注意水平角度,亦即尽量使钢索由出线口至移动部位之机构,于工作时水平滑动, 保持最小角度以确保量测精度及钢索的使用寿命.其次就是尽量不要让其受外力的割伤﹑烧损﹑撞击等不当之事发生:过量的粉尘﹑积屑或是足以破坏钢索的物品贮留于内部的滑轮或出线口将造成钢索破损,导致运转不顺的故障.在成槽机上的安装我们尤其是要注意的驾驶的工作人员一定要根据拉绳位移的位移速度去决定你驾驶的速度,超速也便是负载的话是对拉绳位移传感器最大的伤害。

    时间:2012-08-21 关键词: 位移传感器

  • lvdt位移传感器主要特点

    lvdt位移传感器主要特点 1、使用寿命长:由于铁芯和线圈内壁存在间隙,铁芯在运动的时候与线圈不接触,无摩擦损耗;同时采用优良的生产工艺把骨架和所绕漆包线两者固化为一整体,不会产生断线,开裂等故障,加上其它的优化设计,因此传感器的使用寿命理论上可以是无限的,据国外某机构测试此类传感器的MTBF可达到30万小时,在实际的正常使用中可达到数十年,其最终故障往往是人为造成或变送器电路元器件的寿命决定的。 2、多样的环境适应性:LVDT是少数几种可以应用在多种恶劣环境下的位移传感器,通过特殊方式进行密封处理的传感器可以防潮、防盐雾,可以放置于承压的液体中、气体密闭容器中,甚至于某些腐蚀性环境中,对核辐射电磁辐射干扰不敏感,能抗振动,具有较宽的工作温度范围-25℃~85℃和满足国军标—55℃~125℃工作温度。机电分体的位移传感器单独使用可以在200℃下工作。 3、响应速度快:基于非接触测量的实现,对于某些快速运动物体的冲击振动测量,此类传感器可以提供很宽的频率响应。(位移传感器) 4、高线性度:通过不断研发的线圈绕制方法,LVDT位移传感器的线性度有了显著的提高。 5、高分辨率:由电磁感应原理所决定的任何微小的铁芯运动均会改变所在磁场内次级线圈的感生电动势,使得LVDT位移传感器理论上具有无限的分辨力。随着设计、工艺和电子元器件性能的不断提高。 6、低噪声:对于回弹式的位移传感器,在额定位移输出信号为10.0000V或5.0000V时,其纹波、干扰噪声的峰—峰值电压仅0.2~1.5mVp-p。 7、低的温度漂移:通用型中小量程产品的温度系数在±0.001%/℃~±0.01%/℃。FS。 8、始动漂移小:当接通电源(开机)时,位移读数很快就能基本稳定下来,无需长时间的预热,时间漂移小。 9、无零点残余电压:由于采用了先进的检测电路,避免了零点残余电压的存在。 10、重复性好:重复精度可达零点几微米甚至更小。 11、很宽的量程覆盖范围:在较宽的量程范围内LVDT位移传感器均能实现较高的线性精度。 12、带载能力强:一台测量仪器能同时带1-30支LVDT工作。 13、低故障:这是指在非正常使用下,由于人为的疏忽或误操作而设计的多种措施,以避免传感器受损。 14、功耗低:在双电源供电,输出电压信号时,供电电流﹤10mA。 15、输入、输出的多样性:可以输入单或双电源,其电压值自5V~24V或±5V~±15V;输出信号电压自20mV~10V或±20mV~±10V;输出信号电流;4~20mA或0~10mA,并且具有良好的恒流特性。输出信号频率:0~10000Hz(TTL电平方波)。

    时间:2012-08-20 关键词: 位移传感器 lvdt

首页  上一页  1 2 3 4 下一页 尾页
发布文章

技术子站

更多

项目外包