当前位置:首页 > 直流电源
  • 基本运算放大器配置是怎样的?

    基本运算放大器配置是怎样的?

    必须为运算放大器始终提供直流电源,因此在添加任何其他电路元件之前,最好配置这些连接。图1显示了无焊试验板上的一种可能的电源配置。我们将两根长轨用于正电源电压和地,另一根用于可能需要的2.5 V中间电源连接。板上包括电源去耦电容,其连接在电源和地(GND)轨之间。现在详细讨论这些电容的用途还为时过早,只需知道它们用于降低电源线上的噪声并避免寄生振荡。在模拟电路设计中,务必在电路中每个运算放大器的电源引脚附近使用小型旁路电容,这被认为是良好实践。 图1.电源连接 将运算放大器插入试验板,然后添加导线和电容,如图1所示。为避免以后出现问题,可能需要在试验板上贴一个小标签,指示哪些电源轨对应5 V、2.5 V和地。导线应利用颜色加以区分:红色为5 V,黑色为2.5 V,绿色为GND。这有助于保持连接的有序性。 接下来,在ADALM1000板和试验板上的端子之间建立5 V电源和GND连接。使用跳线为电源轨供电。注意,电源GND端子将是电路接地基准。有了电源连接之后,可能需要使用DMM直接探测IC引脚,确保引脚7为5 V且引脚4为0 V(地)。 注意,使用电压表测量电压之前,必须将ADALM1000插入USB端口。 单位增益放大器(电压跟随器): 第一个运算放大器电路很简单(如图2所示)。这称为单位增益缓冲器,有时也称为电压跟随器,它由转换函数VOUT = VIN定义。乍一看,它似乎是一个无用的器件,但正如我们稍后将展示的那样,其有用之处在于高输入电阻和低输出电阻。 图2.单位增益跟随器 使用试验板和ADALM1000电源,构建图2所示的电路。请注意,此处未明确显示电源连接。任何实际电路中都会进行这些连接(如上一步中所做的那样),因此从这里开始,原理图中没必要显示它们。使用跳线将输入和输出连接到波形发生器输出CA-V和示波器输入CB-H。 通道A电压发生器设置为1.0 V最小值和4.0 V最大值(3 V p-p,以2.5 V为中心),使用500 Hz正弦波。配置示波器,使输入信号迹线显示为CA-V,输出信号迹线显示为CB-V。导出所产生的两个波形图,并将其包含在实验报告中,注意波形参数(峰值和频率的基波时间周期)。你的波形应当确认其为单位增益或电压跟随器电路的说明。 缓冲示例: 运算放大器的高输入电阻(零输入电流)意味着发生器上的负载非常小;也就是说,没有从源电路汲取电流,因此任何内部电阻(戴维宁等效值)上都没有电压降。所以,在这种配置中,运算放大器的作用类似于缓冲器,屏蔽信号源免受系统其他部分带来的负载效应。从负载电路的角度看,缓冲器将非理想电压源转换成近乎理想的电压源。图3给出了一个简单的电路,我们可以用它来演示单位增益缓冲器的这个特性。这里,缓冲器插在分压器电路和某一负载电阻(10 kΩ电阻)之间。 图3.缓冲器示例 断开电源并将电阻添加到电路中,如图3所示(注意这里没有更改运算放大器连接,我们只是相对于图2翻转了运算放大器符号以更好地安排导线)。 重新连接电源,并将波形发生器设置为500 Hz正弦波、0.5 V最小值和4.5 V最大值(4 V p-p,以2.5 V为中心)。同时观察VIN CA-V和VOUT CB-H,并在实验报告中记录幅度。使用示波器输入CB-H还能测量运算放大器引脚3上的信号幅度。 图形实例如图4所示。 图4.缓冲器曲线 移除10 kΩ负载,代之以1 kΩ电阻。记录幅度。现在移动引脚3和2.5 V之间的1 kΩ负载,使其与4.7 kΩ电阻并联。记录输出幅度如何变化。你能预测新的输出幅度吗? 简单放大器配置 反相放大器: 图5所示为常规反相放大器配置,输出端有10 kΩ负载电阻。 图5.反相放大器配置 现在使用R2 = 4.7kΩ组装图5所示的反相放大器电路。组装新电路之前,请记住断开电源。根据需要切割和弯曲电阻引线,使其平放在电路板表面,并为每个连接使用最短的跳线(如图1所示)。记住,试验板有很大的灵活性。例如,电阻R2的引线不一定要将运算放大器从引脚2桥接到引脚6;你可以使用中间节点和跳线来绕过该器件。 重新连接电源并观察电流消耗,确保没有意外短路。现在将波形发生器调整为500 Hz正弦波,设置为2.1 V最小值和2.9 V最大值(0.8 V p-p,以2.5 V为中心),并再次在示波器上显示输入和输出。测量和记录此电路的电压增益,并与课堂上讨论的原理进行比较。导出输入/输出波形图,并将其包含在实验报告中。 图形实例如图6所示。 图6.反相放大器曲线 趁此机会说一下电路调试。在课堂中的某个时候,你可能无法让电路工作。这并不意外,没有人是完美的。但是,你不应简单地认为电路不工作必定意味着器件或实验仪器有故障。这基本上不是事实,99%的电路问题都是简单的接线或电源错误。即便是经验丰富的工程师也会不时出错,因此,学会如何调试电路问题是学习过程中非常重要的一部分。为你诊断错误不是助教的责任,如果你以这种方式依赖其他人,那么你就错过了实验的一个关键点,你将不大可能在以后的课程中取得成功。除非你的运算放大器冒烟,电阻上出现了棕色烧伤痕迹,或者电容发生爆炸,否则你的元器件很可能没问题。事实上,大多数器件在发生重大损伤之前都能容忍一定程度的滥用。当事情不妙时,最好的办法就是断开电源并寻找一个简单的解释,而不要急着责怪器件或设备。在这方面,DMM可是一件十分有价值的调试工具。 输出饱和: 现在将图5中的反馈电阻R2从4.7 kΩ更改为10 kΩ。现在的增益是多少?将输入信号的幅度缓慢增加至2 V,仍然以2.5 V为中心,并将波形导出到实验室笔记本电脑中。任何运算放大器的输出电压最终都会受电源电压的限制,而在很多情况下,由于电路中存在内部电压降,实际限制要远小于电源电压。根据你的以上测量结果量化AD8541的内部压降。如果你有时间,可尝试用OP97或OP27放大器替换AD8541,并比较它能产生的最小和最大输出电压。

    时间:2019-11-10 关键词: 放大器 直流电源 电源资讯

  • 10T真空电弧炉用40kA直流电源的研制与应用

    10T真空电弧炉用40kA直流电源的研制与应用

      1.引言  直流真空熔炼是稀贵金属及高性能合金钢熔炼所必须采用的工艺,因而真空电弧炉及配套电源的设计是这种应用场合的关键与根本,近十年来我国直流真空自耗熔炼炉的设计与制造技术水平飞速发展,国产真空自耗熔炼炉单炉熔炼钛的重量已从原来常用的1T提升到10T,国产真空自耗凝壳炉单炉熔炼钛的重量已从原来常用的260kg提高到800kG,至2010年末,国产10T钛真空自耗熔炼炉及3T钢真空自耗熔炼炉和800kG凝壳炉相继投入运行,这三种填补国内空白的熔炼系统之供电电源都由我们研制,其中吸收了从世界名牌真空电弧炉成套厂---德国ALd公司进口设备的许多先进技术,本文介绍用于国产10T钛合金熔炼真空自耗炉的2×20kA/60V直流电源的设计及使用情况,热望能推进我国此行业的发展。  2.原理与设计  10T钛合金熔炼真空自耗炉工艺要求配套直流电源输出额定参数为40kA/60V,在此之前国产的此类用途的电源容量最大仅30kA/50V,图1给出了系统的总原理框图,从图显见,其构成可分为主电路及控制电路两大部分,下面分别分析各部分的工作原理。 2.1 主电路  主电路采用10kV经两级变压器直接降压再晶闸管可控整流的方案,为降低注入电网的谐波含量采用12相可控整流方案,另考虑到熔炼过程中起弧电压为60V,而熔炼电压仅40V左右,功率因数很低的实际工况,主电路中增加了功率因数补偿环节,图2给出了主电路的原理图,图中应用了两套双反星形可控整流单元并联,其中图2的上半部分给出了主电路中的降压匹配变压器部分。可控硅  (1)降压匹配变压器  显见,电网10kV先由第一级降压变压器降为690V,再由两台一次分别接为三角形与星形的整流变压器降压,这样设计的目的是为了将第二级整流变压器与可控整流部分装于一个柜体中,构成一体化电源,避免10kV输入整流变压器与整流单元装在一个柜体中,因电压太高,给结构设计带来的不便,同时从根本上解决了多年来,国产这类电源整流变压器放于柜外,现场安装整流变压器与整流柜之间大截面铜母排极难安装,工作量巨大的问题,使现场的安装工作量达到最小,更为可贵的是减小了整个电源的体积,缩小了占地面积,此结构方案是吸收了世界名牌真空电弧炉成套厂---德国ALd公司的先进技术设计与研制的,图中变压器T1采用油浸自冷,而整流变压器T2与T3采用干式水冷,CT1—CT5为进行690V侧交流电流取样的电流互感器,其作用表现在一则为直流霍尔电流  传感器失效后,原电流闭环系统变为开环运行故障的过电流保护提供电流取样信号,二则为功率因数控制器提供对功率因数进行计算的电流取样信号,UT为电压互感器,它用来把690V电压变为功率因数控制器需要的100V标准信号,作为功率因数控制器计算功率因数的电压依据。  (2)可控整流部分  该部分的电路原理构成如图2中的下半部分,其应用了常用的两个双反星形可控整流电路并联,图中HL1与HL2为两个霍尔电流传感器,用于检测每个整流部分输出的实际电流值,提供给闭环调节器及保护单元与显示环节,一则保证在同一个输出电流设定值下,两个双反星形可控整流部分每个承担负载电流的一半,另一方面在对实际运行电流进行实时显示的同时,监控运行状况,若超过实际值,则进行有效迅速的保护。  (3)功率因数补偿的主电路  几乎所有的真空熔炼炉(包括自耗电极熔炼炉和凝壳炉),都存在一个共性问题,这就是空载起弧电压高,随单炉可熔炼金属材料重量的不同为50~75V,熔炼过程中熔化电压又低,一般随单炉可熔炼金属材料重量的不同为30~45V,由此造成不论其使用的直流电源是先应用整流变压器降压,后晶闸管可控整流的方案,还是先采用饱和电抗器调压,后整流变压器再降压,整流管整流的方案,运行时其功率因数都很低,一般为0.45~0.7,为解决本10T钛合金熔炼真空自耗炉用40kA直流电源系统功率因数太低的问题,我们在国内首次在此领域使用的可控整流电源系统中,增加了按熔炼过程中实际负荷功率大小自动调节功率因数的环节,该部分的主电路构成如图2中的右上角所示,图中DZ1~DZ3为进行电容短路故障保护的自动空气断路器,KM3~KM5为用来按实际功率因数大小自动投切补偿支路的接触器,L1、C1~L3、C3分别为三个支路的防止谐波放大的电抗器和功率因数补偿电容器,该功率因数补偿主电路的工作原理为:装于控制回路的功率因数控制器,根据UT与CT1的电压与电流取样信号,实时计算功率因数,并按计算结果与目标值0.95的差别,按8421编码的组合,输出控制KM3~KM5中一个、两个、三个闭合,按功率因数的实际需要投入相应的补偿电容,满足无论是化一次锭还是化二次锭,在输出直流电流从10kA~40kA变化的整个工作范围内,都可以保证690V侧的功率因数既不低于0.95又不高于1.0。  2.2 可控整流部分的控制电路  可控整流部分的控制电路分为给定积分、闭环调节器、电压电流检测与处理、同步环节、触发脉冲形成、保护监控电路,限于篇幅本文仅介绍几个关键的单元电路,其余电路可参考文献3。  (1)闭环调节器  由于真空电弧炉有起弧、熔炼、补缩等工艺过程,起弧时电压高为空载电压、熔炼工作时电弧电压仅是直流电源输出空载电压的一半,熔炼过程中又希望构成稳定度很好的恒流源,另一方面为防止起弧时电压太低无法起弧或起弧电压太高击穿坩埚,我们设计了图3所示的起弧时为稳压源,熔炼时恒流控制的可按负载工况自动转换的动态双闭环调节器,图中IC4B与IC4A分别和外围元器件一起构成PI调节器,UF与IF分别为来自电压与电流检测环节的输出信号,电压与电流的检测分别使用了霍尔电压传感器与霍尔电流传感器,IC2为电子开关CD4066,当起弧前因IF几乎为零,比较器IC3A输出高电平,模拟开关IC2中的引脚  6为低电平,引脚12为高电平,其内部引脚11与10接通,反馈为电压反馈,电压闭环调节器工作,构成电压闭环,当起弧成功后,由于电流值通常已达几千安培,比较器IC3A输出低电平,模拟开关IC2中的引脚12变为低电平,电压调节器输出支路因IC2的引脚11与10断开而退出运行,同时IC2的引脚6变为高电平,电流调节器输出支路因IC2的引脚8与9接通而投入运行,电流取样值作为调节器的反馈信号送入电流闭环调节器,从而保证直流电源输出为稳定度很好的恒流源,满足熔炼过程中高精度稳定直流电流输出的需要。  (2)同步环节  10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,应用了光耦合器作为触发脉冲形成单元前级的  同步环节,省去了常规使用的同步变压器,使同步环节的体积及损耗都得以减小,且为构成相序自适应的触发器奠定了很好的基础,图4中6个光耦合器VLC1~  (3)触发脉冲形成  触发脉冲形成环节的原理电路如图4所示,其核心单元IC7为陕西高科电力电子有限责任公司应用CPLD芯片开发的准数字化触发集成电路芯片SGK198,该触发器利用对闭环调节器输出电压变换为与此电压相适应的频率脉冲信号,在SGK198内对这一脉冲信号进行6分频计数的方法来获得6路触发脉冲输出,6路触发脉冲形成的计数器开始计数的时刻由同步环节输出的6路同步信号的后沿所决定,由此可见,闭环调节器输出电压值高,说明反馈小于给定,且误差较大,图4差分器IC4C输出电压便低,压控振荡器输出的频率便低,计数器计满的时间便长,输出触发脉冲便距同步信号后沿距离便远,相当于控制角α减小,整流输出直流电压便增加,反之,当闭环调节器输出电压较小时,说明用户设定的直流电源输出运行参数与实际运行参数误差较小,图4中差分器IC4C输出电压便高压控振荡器输出频率便高,计数器计满的时间便短,输出触发脉冲的时刻便距同步信号后沿距离便近,相当于控制角α增大,晶闸管的导通角减小,输出直流电压降低。  (4)监控保护单元  10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,应用PLC完成运行状况的监控及故障时的保护工作,图5给出了监控与保护环节的软件流程框图,该软件随时监控主电路中对应与晶闸管串联的48只快速熔断器的报警开关输出及装于水冷母排上的报警用温度开关的接点闭合与否,由于两台整流电源共用了48只晶闸管元件,报警信号很多,常规的设计对应每一个故障点,需要一个PLC的输入端口,为减小PLC系统的硬件配置,本电源系统采用了一种矩阵式编程方法,从而使系统硬件得以简化,同时在软件编程时根据电弧熔炼的特殊要求,增加了给定不为零不能合闸起动,主电路合分闸都在脉冲封锁状态下进行,补偿与滤波电源输出功率达到一定值时才投入,在切除  电源功率前先切除功率因数补偿单元,从而有效的防止了次谐波振荡及过补偿状况的发生。  (5)熔速控制及自动给定  为了满足全自动熔炼的需要,本电源通过与炉子工况及熔炼控制的上位计算机之间的通讯,实现了自动熔炼时的按曲线给定,控制单元通过PLC的接口接受上位计算机输出的按工艺设定输出电流指令,在PLC内转换为相应的模拟给定电压从PLC的模拟输出口输出,控制触发脉冲的控制角相位,达到调节及稳定输出电流的目的,并在国内首次使用了熔速控制,使控制达到了很好的效果。  (6)应用电流断续补偿扩大电流稳定不断弧范围  由于自耗电极真空熔炼炉工艺有起弧、熔炼、补缩等工艺过程,为了保证成品锭快熔化完时使锭子端口尽可能的平整,提高熔化锭子成品率,要求补缩电流尽可能的小,尽管在主电路中直流输出端增加了平波电抗器Lo,但也很难使输出直流电流达到全范围连续,因而在控制回路中增加了电流断续的补偿环节,使补缩时的电流连续稳定工作范围达到了最小电流不大于500A的良好效果。  (7) 功率因数补偿环节的控制  由于真空自耗熔炼炉工艺过程较为复杂,工作时  开始初始化封脉冲有否电源冷却水压给定设定为零?高压合闸合闸到位否?解封锁按给定输入设检测实际电压有否故障信号?有停机信息?封脉冲 停机有 有不正常缺相故障?水流量正常?否正常无是未到位到位无无有 电流故障报警置输出调节大小分断高压给定设定为零?是否  图5 PLC监控保护单元的软件流程框图  分起弧、熔炼、补缩、停机等工艺流程,同时对应不同的工作段,要求电源输出稳定运行的电流与电压值不同,由此造成电源运行时其功率因数与注入电网的谐波电流含量会有很大不同,这就决定了对其功率因数补偿和谐波治理要采取变化的参数与结构。只有这样才能达到在整个工艺过程中都可保证功率因数不低于国标允许值,而注入电网的谐波电流不超过国标允许值,因本10T真空自耗炉用直流电源采用12脉波可控整流方案,总体装机用电容量并不大,所以其注入电网的谐波含量是满足国标《GB/T 14549-93电能质量 公用电网谐波》规定的,因而在本系统中仅考虑功率因数补偿,而未设置谐波滤波,只是功率因数补偿的控制电路,既要满足起弧、熔炼、补缩、停机等工艺流程的需要,又要适合熔炼一次锭、二次锭、合金锭及锭子直径不同对直流电源输出电流的要求不同的需要,为此设计了专门的控制器,控制器内对电源的功率因数按输入的电压和电流值随时进行计算,并按熔炼工况及锭子种类和实际使用电流的不同,按8421组合决定投入多大的补偿容量,既严格保证在整个工作周期中,补偿后的功率因数大于0.95,且使谐波不被放大,又可靠的按当电源负荷达到一定值时,功率因数补偿支路才投入,而当电源负荷小到一定值时,功率因数补偿支路先切除,在直流电源停机时,先退出功率因数补偿支路,再断开图2中的断路器DLQ,保证不发生次谐波震荡及谐波放大等不正常情况。  3. 实用效果简介  上述10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,已成功的用于我们研制的国内首台10T电弧炉熔炼系统中,整流变压器、直流平波电抗器、晶闸管整流单元、控制环节、纯水冷却器、进线断路器全部装于两个柜体中,每个整流柜系统输出20kA/60V,使用中两柜并联运行,经实测稳流精度高于1%,功率因数不论是在熔化一次锭还是二次锭,电源输出电流稳定运行范围10kA~40kA,全范围内都不低于0.95,注入电网的谐波电流含量低于国标允许值,补缩工况最小可连续稳定运行电流为500A,现场安装仅需连接交流三相输入690V电缆线及直流输出正负母排和外循环水两根水管,安装甚为方便,运行稳定可靠,达到了十分理想的设计与运行效果。  4.结 论  综上分析,我们可得下述结论:  (1)10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源的研制成功,填补了国内空白,它把整流变压器、平波电抗器、纯水冷却器、整流及控制和保护等单元装于一个柜体中,缩短了引线尺寸及占地面积,减小了现场安装工作量,是个很好的方案。  (2)文中介绍的同步环节及触发脉冲形成电路设  计的较为巧妙,可推广到低压可控整流系统。  (3)电压与电流可根据工况自动切换的闭环调节器设计,兼顾了稳定输出电压与输出电流的不同需要是个不错的设计方案。  (4)采用12脉波可控整流,同时增加动态功率因数补偿环节,通过巧妙的控制器设计,满足了真空自耗熔炼炉的复杂运行工况要求,使运行时的功率因数较高,并保证了注入电网的谐波不被放大,在该行业为首创,在国内真空自耗熔炼炉及凝壳炉电源的系统配置中具有推广性。  (5)文中介绍的PLC监控与保护单元应用矩阵式软件编程方法,使需要的硬件配置要求得以降低,节约了成本,具有创新性。  (6)理论分析和实用效果都证明了,上述方案的可行性,毫无疑问,其应用前景将是十分广阔的。  参考文献  [1] 王兆安 电力电子技术(M)(第四版),北京:机械工业出版社,2006,12  [2] 李 宏 浅谈直流电弧炉用电源的发展,电源技术应用(J),2010.2  [3] 李 宏著,常用电力电子变流设备的调试与维修基础(M),北京:科学出版社,2011  [4] 李 宏著,常用电力电子变流设备的调试与维修实例(M),北京:科学出版社,2011  [5] 李 宏,常用电力电子变流设备器件及集成电路应用指南,第一分册 电力半导体器件及驱动集成电路(M),北京:机械出版社,2001.5  作者简介:  李宏,男,现年52岁,西安石油大学电子工程学院教授,发表论文200多篇,出版专(编)著15部,获中国人民解放军空军科技进步三等奖1项。现兼任中国电工技术学会电力电子学会理事、中国电工技术学会电气节能研究会理事、中国电源学会特种电源专业委员会常务委员、中国电工技术学会电力电子学会学术委员会委员、陕西省电源学会常务理事、主要研究方向为电力电子技术、电气传动技术、特种电源技术及专用集成电路的开发和应用技术。主持设计与电力电子有关的工程项目近110个,研制开发的电力电子成套装置380多台套,运行于国内电力、冶金、化工、石油、机械、电子、核工业、军工等行业,并已出口到东南亚,还装备了中国人民解放军空军导弹部队及陆军科研所,开发的晶闸管、GTR、IGBT专用驱动控制板累计在全国销售15000多块,主编的实用电力电子技术资料在全国28个省市销售近30000多册。

    时间:2019-03-19 关键词: 电路设计 直流电源 电源技术解析 实际应用

  • 水电站直流电源系统接地故障的处理与技巧分析

      一、 前言  辰溪大洑潭水电站位于湖南省辰溪县境内、沅水干流中流,是沅水河的第八个梯级电站。电站装机容量为5×40MW,属大型水力发电站。面前电站五台灯泡贯流式机组均已投产发电。由于电站属河床式电站,闸门的可靠调度及电站机组的稳定运行是电站的工作重点问题,因此电站的电源稳定将是关键因素,而直流系统在水电站中承担的负荷极为重要,它提供为确保全厂继电保护、计算机监控、电气控制、二次信号、事故照明、交流不间断电源等的不间断供电,上述系统要求对供电的可靠性很高。因此直流系统的可靠性是保障电站安全运行的关键条件之一。  二、 直流系统故障接地的分析  大洑潭水电站直流系统安装完成投运后,经过一段时间的运行后出现了直流系统故障接地报警,但未出现接地故障断电退出运行的现象,经过现场对直流系统的蓄电池、一次回路、二次控制回路等的检查未发现有接地现象。  由于直流系统在电站分布范围广、外露部分多、电缆多、且较长。所以,特别是在仍再建水电站的很容易受尘土、潮气的腐蚀,使某些绝缘薄弱元件绝缘降低,甚至绝缘破坏造成直流接地。因此在分析直流接地的原因有如下几个方面:1、二次回路绝缘材料不合格、绝缘性能低,或年久失修、严重老化。或存在某些损伤缺陷、如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等;2、二次回路及设备严重污秽和受潮、接地盒进水,使直流对地绝缘严重下降;3、小动物爬入或小金属物件掉落搭接在元件上造成直流电源系统接地故障,另外老鼠、蜈蚣等小动物爬入带电回路导致接地故障;4、在安装施工过程中某些元件的线头、未使用的螺丝、垫圈等零件,掉落在带电回路上从而引起故障。  大洑潭水电站直流电源系统通过上述分析的原因进行排查,排除了由于设备本身质量发生个故障的原因,最后判断由于电站面前仍然处在建设工程中,蓄电池室由于土建在施工过程中存在室外雨水进入,电池工作环境下降导致受潮影响,采取适当措施后故障消失。  三、直流系统接地故障的危害  通常在直流电源的接地故障中,两点接地是危害较大的,由此可能造成严重后果。直流系统发生两点接地故障,便可能构成接地短路,造成继电保护、自动装置误动或拒动,二次信号异常,或造成直流电源动作消失,使保护及自动装置、控制回路失去电源。在复杂的保护回路中同极两点接地,还可能将某些继电器短接,不能动作于跳闸、致使断路器越级跳闸的发生。  1、直流正极接地,有使保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈正常与负极电源接通,若这些回路再发生一直接地,就可能引起误动作。并且两点接地还可能造成误合闸,误报动作信号。  2、直流负极接地,有使保护自动装置拒绝动作的可能。因为,跳、合闸线圈、保护继电器会在这些回路再有一点接地时,线圈被接地点短接而不能动作。同时,直流回路短路电流会使电源保险熔断,并且可能烧坏继电器接点,保险熔断会失去保护及操作电源。  三、直流系统接地故障的处理方法和技巧  查找直流接地故障的一般顺序和方法  1、分清接地故障的极性,分析故障发生的原因;  2、若站内二次回路有工作,或有设备检修试验,应立即停止。拉开其工作电源,看信号是否消除;  3、用分网法缩小查找范围,将直流系统分成几个不相联系的部分。注意:不能使保护失去电源,操作电源尽量用蓄电池带;  4、对于不太重要的直流负荷及不能转移的分路,利用“瞬时停电”的方法,查该分路中所带回路有无接地故障;  5、对于重要的直流负荷,用转移负荷法,查该分路而带回路有无接地故障。查找直流系统接地故障,后随时与调度联系,并由二人及以上配合进行,其中一人操作,一人监护并监视表计指示及信号的变化。利用瞬时停电的方法选择直流接地时,应按照下列顺序进行;  ① 断开现场临时工作电源;② 断合事故照明回路;③ 断合同信电源;④ 断合附属设备;⑤ 断合充电回路;⑥ 断合合闸回路;⑦ 断合信号回路;⑧ 断合操作回路;⑨ 断合蓄电池回路。  在进行上述各项检查选择后仍未查出故障点,则应考虑同极性两点接地。当发现接地在某一回路后,有环路的应先解环,再进一步采用取保险及拆端子的办法,直至找到故障点并消除;  直流接地故障发生排查同时注意某些技巧  1、查找必须及时。由于运行环境及气候的变化都可能导致直流系统其工作不稳定,或者造成故障的直接发生,因此,如果发生故障即应立即进行排查。  2、定期进行巡检。主要是利用精度较高的检查装置对直流回路进行检查,记录绝缘较差部位的回路,并在条件较为恶劣的情况下复查情况,做到重点部位重点检测。  3、按序查找。故障发生后,可先按:信号回路,照明回路,操作回路,控制回路,再保护回路进行。同时又要结合前面提及的绝缘情况较差的部位和回路优先排查。  四、 查找接地故障时的注意事项  1、瞬停直流电源时,应经调度同意,时间不应超过3秒钟,动作应迅速,防止失去保护电源及带有重合闸电源的时间过长;  2、为防止误判断,观察接地现象是否消失时,应从信号、光字牌和绝缘监察表计指示情况综合判断;  3、尽量避免在高峰负荷时进行;  4、防止人为造成短路或另一点接地,导致误跳闸;  5、按符合实际的图纸进行,防止拆错端子线头,防止恢复接线时遗留或接错;所拆线头应做好记录和标记;  6、使用仪表检查时,表计内阻应不低于2000欧/伏;  7、查找故障,必须二人及以上进行,防止人身触电,做好安全监护;  8、防止保护误动作,必要时在顺断操作电源前,解除可能误动的保护,操作电源正常后再投入保护。  五、结论  在各类电站就发电厂直流系统中,如发生直流接地系统故障发出报警时,应当用先进的检测设备和平时运行中积累的经验对问题进行具体分析,适当应用直流系统接地排查的一些方法和技巧,就能迅速查明接地的原因,排查故障,确保电站的安全稳定运行。

    时间:2019-03-18 关键词: 直流电源 电源技术解析 水电站

  • 试探影响真空自耗电极熔炼炉供电直流电源稳定性的因素

    试探影响真空自耗电极熔炼炉供电直流电源稳定性的因素

      1.引言  直流真空熔炼是稀贵金属及高等级合金钢必定要采用的工艺,这种工艺配套的设备从大的方面分为真空熔炼炉和给其供电的直流电源两大部分,随着是铸造产品和炼锭子的不同,真空熔炼炉分为以化锭子为主要目的的真空自耗电极熔炼炉和以浇铸模型件的真空浇铸凝壳炉两大类别,而它们的供电电源又分为整流变压器一次高压侧饱和电抗器交流调压、整流变压器二次侧整流管整流和整流变压器一次侧晶闸管可控调压、整流变压器二次侧整流管整流及整流变压器二次晶闸管一次调压三种方案,在国内由于整流变压器一次侧晶闸管交流调压,需要增加先将6kV或10kV甚至35kV降为晶闸管可以承受的几百伏电压后进行交流调压,然后再将调压后的电压经整流变压器降为几十伏,由整流管整流,使用中需要两级降压变压器,且随着近年真空熔炼炉单炉可熔化金属重量的不断增大,对直流电源的输出容量要求越来越大,由此决定了国内使用的直流供电电源基本状况可分为三个阶段:即1997年前,整流变压器二次侧晶闸管一次调压的方案几乎在国内没有使用,当时主要使用整流变压器一次侧饱和电抗器调压、整流变压器二次侧二极管整流;1997年~2004年之间,整流变压器二次侧晶闸管一次调压和整流变压器一次侧饱和电抗器调压、整流变压器二次侧二极管整流两种方案混合使用,2005年以后整流变压器二次侧晶闸管一次调压的方案可以说挤占了近95%的市场份额,由于饱和电抗器调压与晶闸管调压两种方案的响应时间相差近100个数量级,它们对供电直流电源输出电压电流稳定性有很大影响的坩埚比的敏感程度会有很大的不同,本文结合我们采用整流变压器二次侧晶闸管一次调压方案,为某研究院提供的65kA/80V直流电源与凝壳炉配套调试时,不同坩埚比的实验数据分析合理的坩埚比与弧压及弧流稳定性的关系,以期抛砖引玉,与同行探讨。  2.直流真空熔炼炉的工作过程和对直流电源的要求  无论是真空自耗电极熔炼炉还是凝壳炉,其工作流程的相同点就是工作时自耗电极,工作过程分起弧、熔炼阶段,而不同之处在于以熔化炼锭子为目的的自耗电极熔炼炉为提高化料成品率需要有化成品锭熔化快结束时的补缩工艺,且额定电流下工作时间长达1小时至数小时,而以精密铸造为目的的凝壳炉有熔化时间短一般几分钟~十几分钟,熔化需要电流密度大,熔炼过程中有凝壳的不同点,但他们的工作过程都可以图1所示原理来说明。图中1为要熔化的锭子称作电极,2为坩埚(又称为结晶器),3为水套,4为炉室密封盖,5为冷却水,6为抽真空管道,7为稳弧线圈,8为熔化时的电弧,9为已熔化后的金属溶液。系统工作过程为:在炉内的真空度达到不致被熔炼金属氧化的前提下,系统投入运行,直流电源输出在正负极之间有一定的电压通常为空载电压,随着操作人员的控制升降机构使电极杆下降,当电极杆下降到与坩埚底部的距离小到一定程度时,吊在电极杆下部的要熔化材料与放于坩埚底部的起弧料之间发生电离而产生电弧,电极开始熔化,随着时间的推移要熔化的金属变为液体流入坩埚中,坩埚内的液态金属高度不断增加,而要熔化的金属电极长度逐渐减小,为了保证熔化时由被熔化电极下端而与坩埚中液态金属上表面之间距离所决定的弧压相对恒定,需要此弧压不要大范围波动,另一方面为保证在同样的时间内被熔化掉的金属量基本相同,又需要流过被熔化金属与液态金属之间的直流电流高度恒定,由于在熔化过程中一但发生被熔化金属熔液成流动柱形短接被熔化金属与已熔化后位于坩埚中的金属溶液(行业内称为掉块)形成直流电源输出短路,需要直流电源具有很好的挖土机特性,即自动迅速把输出直流电压降低,保持输出电流不变。再应看到,由于两种炉型铜坩埚之外都是冷却水,为防止过高的瞬态功率加到坩埚壁与被熔化金属之间形成侧弧击穿坩埚使冷却水进入坩埚内,在高温下电解水引起氢气爆炸,不希望弧压太高,且被熔化锭子与坩埚内壁之间要留有合适的距离,综上的分析,直流真空熔炼炉对直流供电电源的要求有以下几点:  1)要有合适空载起弧电压,最早国内应用了德国人的起弧电压为82V的数据,这几年我们经不断的改进与总结,对自耗炉已降为50V,对凝壳炉已降为65V。  2)要有很硬的稳流特性,在稳流时输出直流电压波动不能过大。  3)要有快速的保护性能。  3.影响直流电源输出电压电流大小与稳定性的因素分析  从图1所示的工艺过程示图可以看出,影响直流熔炼炉供电电源输出电压与电流稳定性的关键因素有:  1)直流供电电源自身的闭环调节性能; 2)弧压的高低;  3)坩埚的内径与被熔化金属锭子外径之差的大小;  4)炉内真空度的高低;  5)坩埚冷却水温的高低;  6)稳弧电流的大小。  根据我们对近百台真空熔炼炉与电源的调试体会,上述因素对直流电源电压电流稳定性的影响表现在:  (1)直流电源自身调节性能首先取决于所用供电直流电源的方案,采用整流变压器一次饱和电抗器一次侧调压,整流变压器二次侧晶闸管相控整流的方案,因属电磁调节,调节响应时间为秒级,因而直流电流的稳定性不可能做的很高,表现出应用时输出直流电压与电流的波动都比较大,采用整流变压器二次侧晶闸管可控整流的方案,因闭环调节器的响应时间为毫秒级,因而在闭环调节器的参数整定好后,具有很好的快速调节性能,当弧压波动较大时,它可以提供很好的稳流特性,但需直流电源输出电压快速变化来保持电流稳定。  (2)炉内真空度越高,被熔化电极与已熔化完的金属之间电阻的影响越小,电流的波动就越小,真空度不好与波动可视同等效为该等效电阻波动,所以电压与电流就波动。  (3)坩埚冷却水温的高低虽然不直接参与影响直流电源输出电压与电流的稳定性,但却影响熔化时所需的电流大小,由于熔化时被熔化金属溶为液态流入坩埚中,坩埚外为流动的冷却水,水温过低靠近坩埚内壁的金属冷却的快,而远离坩埚内壁的金属溶液冷却的慢,对自耗电极熔炼炉有可能导致锭子外壁气孔增大,使用时剥皮较多,对凝壳炉水温太低将导致较厚的凝壳,而要解决此问题,则需要加热功率大于冷却功率,也就是说需要较大的熔化电流,在水温较低时需要保证靠近坩埚外壁的金属溶液散热速率要慢。由此可见,并非坩埚的冷却水温越低越好,一般建议冷却水温进口温度不低于+5℃,而出口水温不高于60℃。  (4)所谓弧压是指熔化过程中加在被熔化电极已熔化位于坩埚中的金属溶液上端面之间电压的高低,同样的电流下弧压越高熔化功率越大,熔化速率越快;另应看到,弧压越高,则等效电弧长度越长,图2给出了熔炼时电弧的分布断面示意图,同时标出了要熔化金属锭子外沿与坩埚内壁之间的距离δ,同时画出了有稳弧线圈且通有稳流电流时,金属溶液在磁场作用下旋转造成的中心低靠近坩埚部分液面高的形状,从此图可见,弧压越高,则熔化速度越快,要求被熔化锭子下降的速率越快,由于电极杆升降一般由伺服电机拖动,所以伺服电机不断启停,很难100%保证熔化速度与电极杆的下降速率完全匹配保证弧压稳定,造成弧压相对波动较大,引起电流变化,因而弧压越高电流就易波动,对闭环稳流的调节性能要求就要迅速。  另应看到,在图2中δ一定时,过高的弧压将会造成图3所示的侧弧,有可能使坩埚熔化导致严重事故,因而正确的熔炼要求是短弧熔炼,低弧压大电流熔炼,据此应保证弧长L小于图2中的δ。  (5)稳弧线圈与稳弧电流的大小,为了保证不出现图3所示的问题,炉体设计中采用稳弧线圈中以直流电流产生磁场来约束电流的方向,稳弧线圈一般绕在水套外壁使电弧不要分散,图2中同时给出了稳弧线圈与通过电流的流动方向,显见其产生的磁场方向与图中电流方向一致,所以可约束电弧的发散,自然稳弧电流越大,其对电弧的束缚力就越大,过大的稳弧电流有可能造成电极杆出现控心熔炼,即图2中的ΔL很大,造成弧长太长反而不利于电流稳定,但过小的稳弧电流有可能在δ一定时,使图2中ΔL为负值,产生图3中那样人希望的侧弧。  4.坩埚比与熔炼用直流电源电压电流稳定性的关系分析与实验  坩埚比指真空熔炼炉要熔炼金属锭子的直径与坩埚内径之比,若以d1表示锭子直径,d2表示坩埚内径,σ表示坩埚比,则坩埚比可表示为  σ=d1/d2(1)  参考图2坩埚比近似表示了σ的大小,σ越小,则δ越大。  4.1 坩埚比对电压电流稳定性的影响分析  同样稳弧电流与熔化电流条件下,坩埚比越小,则图2中的δ越大,由于坩埚外为冷却水,坩埚均由铜金属材料制成,在δ的空间内为空气,从温度场的分布来看,图2中弧区中心温度最高越靠近坩埚温度越低坩埚温度最低,所以δ越大,一则坩埚自身散热,二则由于熔化时为保持熔炼炉内的高度真空度与炉体配套的真空系统中几台泵在不停的抽真空,更加速了δ区间内的散热,由此导致了锭子靠近坩埚的外部区域温度低,而锭子中心内部温度高,引起锭子中心熔化速度快,而外壁熔化速度慢,使图2中的ΔL变的较大,导致熔化过程中形成了一个类似于下端面为倒放碗状的锭子,当有稳弧线圈时,已熔化的金属溶液沿稳弧线圈作用的磁场旋转,形成一个正放的碗状溶池。其刨面图如图4所示,间接导致电流闭环调节器调节速度快调节特性硬时,尽管可以稳定电流,但弧压大范围波动,当电流闭环调节器调节速度慢,调节特性软时,虽可使弧压在波动范围降低,但电流稳定度不够,弧压的大范围波动将使操作人员无法判断有否侧弧产生,对安全生产造成很大危害,另应看到,这种状况不论对凝壳炉还是自耗炉都会影响弧光颜色,由于此时看到的仅是从图4中两个相对扣的碗状球面缝隙中透出的很小一部分弧光,而不是真正的弧,影响操作人员对弧压的判断且无法压低弧压进行低弧压熔炼,其原因在于尽管中心弧长很长,但稍以压弧边上便短路,使弧压无法压低。  4.2 实验验证  为了验证上述分析,我们应用研制的国内首套60kA/80V凝壳炉电源,针对不同的坩埚比在500kg和150kg凝壳炉中进行了试验,该电源系统应用四台15kA的6脉波可控整流直流电源并联构成24脉波,由两套独立的12脉波电源构成,图5与图6分别给出了多次实验中通过计算机采集系统采集的最有代表性的典型电压电流波形,其中图5应用锭子外径为Φ280,坩埚内径为Φ460,坩埚比σ为0.6087,而图6应用锭子外径为Φ350,坩埚内径为Φ460,坩埚比σ为0.761,使用电流前者为30kA,而后者为30kA、35kA、40kA 3个台阶,弧压前者平均值为48V,且大范围波动,而后者平均值仅42V,波动范围小,所用模拟电压前者波动频率很高,而后者虽有波动但频率很低,电流闭环调节器的参数又完全相同,实验验证  5.结论  综上分析,我们可得下述几点结论:  1)真空熔炼用直流电源以整流变压器二次相控整流电流闭环控制的方案效果最好。  2)影响真空熔炼用直流电源输出电压与电流稳定性的因素很多,坩埚比对弧压和电流稳定性的影响很  大,国内以往的坩埚比范围数据为0.6~0.75,从节能及稳定输出角度考虑应靠近0.75来选取。  3)无论是自耗炉还是凝壳炉,锭子外沿至坩埚内壁的间距应以50~60mm为较佳值。  参考文献  [1] 李宏 浅谈我国真空熔炼用直流电源的发展(J),电源技术应用,2010,NO.  [2] 李 宏著 常用电力电子变流设备的调试与维修基础(M),北京,科学出版社,2011  [3] 马开道 稀有金属熔炼工艺及装备(M),北京,冶金工业出版社,2011  作者简介:  李宏,男,现年52岁,西安石油大学电子工程学院教授,发表论文200多篇,出版专(编)著15部,获中国人民解放军空军科技进步三等奖1项。现兼任中国电工技术学会电力电子学会理事、中国电工技术学会电气节能研究会理事、中国电源学会特种电源专业委员会常务委员、中国电工技术学会电力电子学会学术委员会委员、陕西省电源学会常务理事、主要研究方向为电力电子技术、电气传动技术、特种电源技术及专用集成电路的开发和应用技术。主持设计与电力电子有关的工程项目近110个,研制开发的电力电子成套装置380多台套,运行于国内电力、冶金、化工、石油、机械、电子、核工业、军工等行业,并已出口到东南亚,还装备了中国人民解放军空军导弹部队及陆军科研所,开发的晶闸管、GTR、IGBT专用驱动控制板累计在全国销售15000多块,主编的实用电力电子技术资料在全国28个省市销售近30000多册

    时间:2019-03-18 关键词: 稳定性 直流电源 电源技术解析

  • 直流电源系统事故和故障处理预案

      一 蓄电池故障和事故处理预案  (一) 防酸蓄电池故障及处理  1. 防酸蓄电池内部极板短路或开路,应更换蓄电池。  2. 长期处于浮充运行方式的防酸蓄电池,极板表面逐渐会产生白色的硫酸铅结晶体,通常称之为“硫化”;处理方法:将蓄电池组退出运行,先用I10电流进行恒流充电,当单体电压上升为2.5V时,停充0.5h,再用0.5 I10电流充电至冒强烈气泡后,再停0.5h再继续充电,直到电解液“沸腾”;单体电压上升到2.7~2.8V时,停止充电1~2h,然后用I10电流进行恒流放电,当任一个单体蓄电池电压下降至1.8V时,终止放电,并静置1~2h,再用上述充电程序进行充电和放电,反复数次,极板上的硫酸铅结晶体将消失,蓄电池容量将得到恢复。  3. 防酸蓄电池底部沉淀物过多,用吸管清除沉淀物,并补充配置的标准电解液。  4. 防酸蓄电池极板弯曲、龟裂、变形,若经核对性充放电容量仍然达不到80%以上,此蓄电池应更换。  5. 防酸蓄电池绝缘降低,当绝缘电阻值低于现场规定时,将会发出接地信号,且正对地或负对地均能测到电压时,应对蓄电池外壳和绝缘支架用酒精擦拭,改善蓄电池室的通风条件,降低湿度,绝缘将会提高。  (二) 阀控密封铅酸蓄电池故障及处理  1. 阀控密封铅酸蓄电池壳体变形,一般造成的原因有充电电流过大、充电电压超过了2.4V×N、内部有短路或局部放电、温升超标、安全阀动作失灵等原因造成内部压力升高。处理方法是减小充电电流,降低充电电压,检查安全阀是否堵死。  2. 运行中浮充电压正常,但一放电,电压很快下降到终止电压值,一般原因是蓄电池内部失水干涸、电解物质变质,处理方法是更换蓄电池。  (三) 镉镍蓄电池故障及处理  镉镍蓄电池容量下降,放电电压低。处理办法是更换电解液,更换无法修复的电池,用I5电流进行5h充电后,将充电电流减到0.5 I5电流,继续充电(3-4)h,停止充电(1-2)h后,用I5放电至终止电压,再进行上述方法充电和放电,反复(3-5)次,其容量将得到恢复。如果容量仍然不能恢复时,应更换蓄电池。  二 充电装置、绝缘监测装置的故障和事故处理应按照厂家的规定进行,并应在现场运行规程中明确具体处理方法。  三 直流系统故障和事故处理预案  (一) 220V直流系统两极对地电压绝对值差超过40V或绝缘降低到25KΩ以下,48V直流系统任一极对地电压有明显变化时,应视为直流系统接地。  (二) 直流系统接地后,应立即查明原因,根据接地选线装置指示或当日工作情况、天气和直流系统绝缘状况,找出接地故障点,并尽快消除。  (三) 使用拉路法查找直流接地时,至少应由两人进行,断开直流时间不得超过3S。  (四) 推拉检查应先推拉容易接地的回路,依次推拉事故照明、防误闭锁装置回路、户外合闸回路、户内合闸回路、6~10kV控制回路、其他控制回路、主控制室信号回路、主控制室控制回路、整流装置和蓄电池回路。  (五) 蓄电池组熔断器熔断后,应立即检查处理,并采取相应措施,防止直流母线失电。  (六) 直流储能装置电容器击穿或容量不足时,必须及时进行更换。  (七)当直流充电装置内部故障跳闸时,应及时启动备用充电装置代替故障充电装置运行,并及时调整好运行参数。  (八) 直流电源系统设备发生短路、交流或直流失压时,应迅速查明原因,消除故障,投入备用设备或采取其他措施尽快恢复直流系统正常运行。  (九) 蓄电池组发生爆炸、开路时,应迅速将蓄电池总熔断器或空气断路器断开,投入备用设备或采取其他措施及时消除故障,恢复正常运行方式。如无备用蓄电池组,在事故处理期间只能利用充电装置带直流系统负荷运行,且充电装置不满足断路器合闸容量要求时,应临时断开合闸回路电源,待事故处理后及时恢复其运行。  四 直流电源系统检修与故障和事故处理的安全要求  (一) 进入蓄电池室前,必须开启通风。  (二) 在直流电源设备和回路上的一切有关作业,应遵守《电业安全工作规程》的有关规定。  (三) 在整流装置发生故障时,应严格按照制造厂的要求操作,以防造成设备损坏。  (四) 查找和处理直流接地时工作人员应戴线手套、穿长袖工作服。应使用内阻大于2000Ω/V的高内阻电压表,工具应绝缘良好。防止在查找和处理过程中造成新的接地。  (五) 检查和更换蓄电池时,必须注意核对极性,防止发生直流失压、短路、接地。工作时工作人员应戴耐酸、耐碱手套、穿着必要的防护服等。

    时间:2019-03-15 关键词: 直流电源 电源技术解析 故障处理 系统事故

  • 高稳定度低纹波直流电源设计方案

    高稳定度低纹波直流电源设计方案

    线性稳压电源被广泛应用于科研、电力电子、电镀、广播电视发射、通信等领域, 是大专高等院校、实验室等进行电子电路研究不可或缺的仪器设备。但是传统线性稳压电源存在变压器转换效率低、稳压芯片压差大、滤波电路不够完善等缺点, 时常出现输出纹波大、效率低、发热量大、间接地给系统增加热噪声等问题。在历年的电子设计竞赛中, 作品在比赛场地测试正常, 但在指定测试场地测评时, 电路突然烧毁或者性能指标达不到原先水平的现象时有发生, 一个重要的原因就是测评场地提供的稳压电源电压波动大、供电电流不稳定、正负电压不匹配。因此, 高稳定性、低纹波的稳压电源是科研创新和电子设计竞赛不可或缺的保障。  1 系统总体方案设计  本设计由降压模块、整流滤波模块、线性稳压模块和低通滤波模块组成, 如图1 所示。变压器将220 V/50 Hz 交流电分别降压到±16 V、±6 V、+6 V, 通过整流桥堆整流以及大容量电容滤波后, 进入正( 负) 线性稳压模块, 再经过低通滤波模块滤除直流以外的干扰信号, 分别输出±15 V、±5 V、+5 V 的稳定电压。    图1 系统结构框图  2 主要功能模块分析  2.1 整流滤波模块  整流滤波电路主要由整流桥堆和大容量滤波电容组成, 如图2 所示。整流桥堆具有体积小巧、输出电流大、安装方便等优势, 并能代替由4 只二极管组成的传统桥式整流电路。滤波电路采用大容量电解电容滤波,增加了输出电压的稳定性。根据式(1) 可求出所需滤波电容容量。    当输出电压为5 V、电流为2 A 时,R=U/I=2.5 Ω, 此时,C= kT/2R =20 000 μF,其中,k=5 。电容耐压Umax≥√2Ui≈24.038 V.其中,Ui=17 V, 因此Umax取值为25 V.在电解电容C6 两端并联一个0.01 μF 的瓷片电容C10 可以有效抑制高频干扰。    图2 桥式整流滤波电路  2.2 线性稳压模块  LT1083/LT1033 系列正负可调稳压器的效率大大高于现有器件,可以提供7.5 A、5 A 和3 A 输出电流,并能在低至1 V 的压差条件下运行,压降在最大电流条件下保证在1.5 V 以内。负载电流减小时允许压差同时减小,可在多种电流水平条件下通过片内修整电路,提供所保证的最小压差,并能够使输出电压准确度调节至1%.其电压调整率为0.015%,负载调整率为0.01%,对电流限值也进行了修整,最大限度地减小了过载条件下稳压器和电源电路上承受的应力,具有热功耗限制保护[10].LT1083/LT1033 系列器件的引脚与老式三端稳压器兼容,与大多数稳压器设计中的10 μF 输出电容器以及PNP 稳压器多达10%的输出电流作为静态电流消耗不同,LT1083/LT1033 系列的静态电流流入负载, 大大降低了电源功耗。此芯片电压调整率小、负载调整率小的特点能够保证输出电压稳定度高。正负线性稳压模块电路如图3 所示,其中R1=R3,R2=R4.电路中的电阻参数可根据输出可调电压公式确定:    其中,Uref=1.25 V,IADJ=50 μA,R1=200 Ω。    图3 正负线性稳压模块电路  2.3 低通滤波模块  低通滤波电路采用LC 滤波电路, 滤波电容为4 700 μF电解电容和0.01 μF 瓷片电容, 能有效减少直流的纹波和高频干扰, 两个33 μH/3A 功率电感并联可以隔离交流并提高输出电流。截止频率:    其中,L=33 μH,C=4 700 μF, 图4 为低通滤波器电路图。    图4 LC 滤波电路  3 电源性能测试  测试仪器采用固纬4 位半数字万用表(GDM-8245) 、上海爱仪交流毫伏表(AS2294D) 和调压变压器(TDGC -0.5/0.5) 。负载电阻采用水泥电阻(2.5Ω/20 W、5Ω/20 W、15Ω/20 W) 。电源性能参数如表1 所示。可以看出, 负载调整率和电压调整率反映出了电源较高的稳定度, 纹波系数指标反映出低纹波特性。  表1 电源性能参数表    传统稳压电源因其电压波动大、效率低、体积庞大等缺点影响了电子产品的各项性能指标。本文设计制作的电源不仅具有高稳定性、低纹波的优点, 而且输出电压可调、电压波动小、带负载能力强、体积小巧。由于本文所设计的电源具有非常小的电压调整率, 一旦设置好电压, 即使电网波动, 电源也能保证输出电压与设置电压相同, 为微弱信号和高频信号的处理提供有力的保障, 不仅能有效地避免在电子竞赛测评时由于更换电源而导致的作品性能指标下降甚至烧毁的事件发生, 而且对于电子线路的各项研究有十分重要的意义。

    时间:2019-01-11 关键词: 直流电源 电源技术解析 低纹波 高稳定度

  • 九档可调直流电源电路设计

    九档可调直流电源电路设计

    九档可调直流电源主要是由稳压三端可调集成块(m31)为核心元件,LM317可调端接有三家管VT,可调用电位器RP及电阻R3 R10,可以满足输出所需9种不同的电源电压。  制作时,变压器T可能利用12寸黑白电视机的电视机的电源变压器。亦可自行绕组,采用GEB22828硅钢片一次线圈用 0.7MM漆包线绕组158匝,这样变压器二次输出电压为25V交流电压。  稳压部分IC采用LM317稳压集成电路,通过拨动S2,可以再输出端X3,X4得到固定的九档直流电压。如果调整电位器RP,则可以在0至24V之间任意选择。图中R3至R10之值仅供参考。  为避免使用中转换开关S2出现暂时断开或接触不良,导致输出电压过高而损坏负载,这里设置了一只三极管VT。

    时间:2019-01-10 关键词: 电路设计 直流电源 电源技术解析 九档可调

  • TL431低压差直流电源参数参考及工作点设置

    TL431低压差直流电源参数参考及工作点设置

    TL431作为一种精密稳压源,被大量应用在电子电路设计当中,由于拥有独特的动态抗阻,TL431也经常被作为稳压二极管来使用。稳压源在电路中的使用相当广泛,多数使用3个引脚构成,所以结构简单并且使用起来也比较方便。但是在只有较低电压电池供电时,稳压电源的供电需求有可能增加20%~40%的成本及体积。针对这种情况,本篇文章主要介绍了一种低压差稳压直流电源电路的设计方法,电路器件选用常规器件,成本低,并且具有很好的负载特性和电压稳定性。电路工作原理图1为低压层直流稳压电源电路原理图。该电路是由基准电压、电压放大和电流放大等3个环节组成。其中,基准电压由TL431产生,按图1中电路连接,当通过R0的电流在0.5~10 mA时可获得稳定的2.5 V基准输出。输出电压的具体数值由运算放大器UA确定,采用同相放大器的优越性在于其输入阻抗极大,可很好地将TL431输出的2.5 V电压与后级电路隔离,使其不受负载变化的影响。运放与电阻R3和R2组成比例放大环节,可对基准电压按要求进行比例放大输出,但输出电压最大不能超过运放的电源电压。电流放大采用两个三极管,UA通过驱动调整管VQ2控制调整管VQ1,组成反馈实现电流放大环节,对输出电压进行调节,从而实现稳压输出。二极管VD在运放UA低压输出时,使调整管VQ2基极一发射极电压为负,使VQ2立即进入截止状态,电流Ic2迅速降低,VQ2的VCE升高导致VQ1的基极电压升高,使 VQ1的基极电流IB减少,进而减少输出电流ICQ1(βIB),反之同理。RL是输出负载,C0和C1是滤波电容。电路主要参数设计控制环节设计控制环节回路等效图如图2和图3所示,其中图2为比例电压增益原理图,图3为电流放大原理图。按照图2和图3,可得出控制环节回路方程:式(2)中,Irg为运放UA的输出端1的输出控制电流。由式(2)可知,Irg通过控制VQ2的电流,IC2控制VQ1的基极电流,IB1、R8控制调节管VQ2,进而控制VQ1的输出电流IC1,VQ2是与 VQ1形成串联负反馈,无需进一步放大VQ1的输出电流IC1,用R8对IC1分流。电路输出电压Vcc为5 V,驱动额定负载是350 Ω,供电电源是标准7 V输出的电池。运算放大器选LM358,取R1、R2为10 kΩ,TL431电流范围是100~150 mA,选用R1=3 kΩ,符合要求。VCC=(1+R2/R1)x2.5=5 V。合理选取R8和R9的电阻值,使VQ1和VQ2均工作在线性区。电网和负载波动情况下,Ib、Ie、Ucc尽量小,以减少损耗。设置静态工作点要选择合适的驱动管VQ1和偏置电阻R8、R9。VQ1的静态工作点为:式中,Irg为运放的控制输出信号,Vin为电源电压,Vcc为5 V输出电压,RL为额定负载200Ω,VD是二极管导通电压0.7V。由式(3)和(4)可以确定VQ2的参数,然后,计算电阻R9:使用放大倍数β1、β2在30-80之间的调整管,放大倍数较大的调整管消耗功率较小,但稳定性降低,这里选取β为50,设计供电电源在5.2~9 V之间波动,为了防止电源电压高时烧毁调整管VQ2,加约1 kΩ的电阻R8以限流保护。过流保护电路的设计图3中,电阻Ri与三极管VQ3组成过流保护环节。输出电流过大时,取样电阻Ri上的电压大于0.7 V,VQ3导通,迫使调整管基极电压Vbe降低,直到关闭电源输出。R4=0.7/kIC。其中,LC为输出电流,K为最大过流系数,通常取值约1.5。 R7=(Vcc-Uce3)/Ie3≈Vrg/Ic3,限制Ic3不宜过大,以免VQ3过流损坏。试验图4为设计的一个直流稳压电源模块,输入电源为直流5~9 V的蓄电池组,分别对设计电路进行电源特性和负载特性试验,其中负载特性试验以输入的6.5 V蓄电池模拟实际使用工作环境。图5为其试验记录结果。输出纹波试验数据,当电源输入电压为5-11 V,输出纹波为5~8 mV。从实验当中能够看出,本设计的具有稳压精度高、负载特性好的一系列特点,最主要的是电路结构简单,可利用接口P0监测实际电源,此电路已投入生产,通过实践检验该电路设计性能可靠,耗电少,可很好满足单电源供电应用情况。本篇文章主要介绍了一种低压差直流稳压电源设计,这种设计克服了在电源供电电压过低时造成的不便,并且节约了成本和时间,希望大家在阅读过本篇文章之后,能对这种方法有进一步的了解。

    时间:2018-12-28 关键词: 直流电源 电源技术解析 tl431 低压差

  • 直流电源防雷电子电路设计图

    直流电源防雷电子电路设计图

      采用常规的两级设计方式,第一级用来吸收较大的浪涌,后级采用TVS来对残压进一步的吸收。第一与第二级之间采用电感进行退耦,起到延时的作用,这样可以保证MOV可以比TVS先动作。u 前级共模采用压敏与气体管相结合的方式;u 前级差模采用压敏、温度保险相结合的方式,温度保险可以消除压敏失效短路时火灾的发生。  u 元件选择:压敏电阻 MOV温度保险 TF放电管 GDT电感 L瞬态抑制二极管 TVS14D  u 前级共模采用压敏与气体管相结合的方式;  u 前级差模采用压敏、温度保险相结合的方式,温度保险可以消除压敏失效短路时火灾的发生。  u 元件选择:

    时间:2018-12-27 关键词: 直流电源 电源技术解析 防雷电子 电路设计图

  • 使用DJ803的电机正反转控制器原理与故障维修

    使用DJ803的电机正反转控制器原理与故障维修

    传统的电动机|0">电动机正反转控制电路相当复杂,而功能却相当简单。笔者最近购买的一种多功能电动机正反转控制器|0">控制器,结构非常简单,而控制功能却相当强大。因此,笔者对其实物进行了剖析,并结合产品说明书整理出此文,供读者参考。 图1是专用控制芯片的到位开关、单键控制、保护时间设定的连接电路。 D1803集成电路|0">集成电路具有8级保护时间,通过TIM0~TIM2三引脚进行设定。具体设置方法如附表所示。 图2是电机控制最基本的电路图,整个控制电路采用12V直流电源|0">直流电源供电。 一、直流电机的正反转控制图3是控制直流电机的继电器触点与电机的连接方法,适合6V~48V各种电压的直流电机。 1.正转、反转独立控制模式12V直流电源(见图2)通过IC2(78L05)稳压输出5V直流电压为控制集成电路IC1(D1803)提供工作电源。晶体三极管VT1、VT2、电阻R1~R4、继电器J1、二极管VD1等组成了电机正转输出电路,晶体三极管VT3、VT4、电阻R5~R8、继电器J2、二极管VD2等组成了电机反转输出电路。 待机状态下,IC1的⑥、⑦、圈15、圈17脚都为高电平H,继电器11、12均处于释放状态,整个控制器静态电流约2mA。 按下按钮SWl,IC1的⑥脚变为低电平L,IC1的圈17脚也随之变为低电平L,继电器J1吸合,电机正转。如果转动到规定的位置,正转到位开关ZZDW接通,IC1的②脚变为低电平,IC1的圈17脚立即跳变为高电平,继电器J1释放,电机停止转动。如果到达设定的运转时间,无论正转到位开关ZZDW是否接通,继电器J1都将释放,电机停止转动。 当按下按钮SW2,IC1的⑦脚变为低电平L,IC1的圈15脚也随之变为低电平L,继电器J2吸合,电机反转。 如果转动到规定的位置,反转到位开关FZDW接通,IC1的③脚变为低电平,IC1的圈15脚立即跳变为高电平。继电器J2释放,电机停止转动。如果到达设定的运转时间.无论反转到位开关FZDW是否接通,继电器12都将释放,电机停止转动。 2.单键控制模式如果采用单键操作。IC1的⑥脚连接的正转控制按钮SW1和⑦脚连接的反转控制按钮SW2可以不使用,而改为由IC1的圈11脚的按钮DJIN操作(见图2)。 在单键模式下,如果电机运行位置处于正转的终止位置,按下按键后将自动反转;如果电机运行位置处于反转的终止位置,按下按键后将自动正转;如果电机运行位置处于非终止位置(即两个终止点之间),按下按键后将自动正转。 单键模式下,必须设置正转到位开关ZZDW和反转到位开关FZDW,电机运行到规定的保护位置自动停机。 二、交流电机正反转控制1.单相交流电机笔者购买的控制器是用于控制直流电机的,根据其工作原理.笔者这里给出交流电机正反转控制的电路图,供读者参考。 图4是控制单相交流电动机时,继电器触点与电机的连接方法,图中采用变压器为控制器提供12V工作电源。整个控制过程与上面的直流电机控制相同,这里不再详细叙述。 2.三相交流电机图5是采用控制器控制三相交流电动机正反转的电路图。图中,首先用继电器J1、J2分别去控制三相交流接触器KM1和KM2,通过KM1、KM2来切换三相交流电的相序,达到改变电机转动方向的目的。当KM1和KM2都停止工作的时候,电机也停止转动。 三、故障维修由于这种控制器采用了专用集成电路进行控制,故障率非常低。使用时间长了之后,偶尔会出现如下故障:电机某个方向不转动;转动到某个方向的终点时不立即停止,要达到设定的保护时间才停止;所有控制失灵。 [例1]电机某个方向不转动这种故障主要是由于电机运行时的大电流流过继电器触点,长时间使用之后,导致某个继电器常开触点烧蚀,引起电机某个方向不能运转。如果正转方向不转动,则更换继电器11;如果反转方向不转动,则更换继电器12。对于三相交流电动机的控制电路,有关重点检查交流接触器,正转方向不转动时检查继电器11和交流接触器KM1;反转方向不转动时检查继电器12和交流接触器KM2,[例2]转动到某个方向的终点时不立即停止,要达到设定的保护时间才停止这种故障主要是由于到位开关(行程开关)长期使用出现接触不良,控制器无法检测到电机运行终止位置,不能在指定地点停机,由于控制器采用行程+时间的保护模式,电机直到运转到设定的时间才停止工作。根据不停机的方向,更换相应的到位开关即可。 [例]所有控制失灵为了便于对电机的控制,控制器是长时间通电的,这样就容易造成了控制器“死机”(这种故障一般发生在气温较高的夏季)。遇到这种故障,断开控制器的工作电源。等待几分钟再接通控制器的电源即可。

    时间:2018-11-21 关键词: 集成电路 控制器 电动机 直流电源 电源技术解析

  • 基于TC35i的远程直流电源监控系统

    基于TC35i的远程直流电源监控系统

    1 引言 变电站、发电厂、通信机房需要稳定可靠的直流电源|0">直流电源系统为蓄电池|0">蓄电池充电,向控制回路和合闸回路供电。直流电源管理电池充放电、监控开关状态和直流系统运行状态,以便在运行过程中确保电源和设备安全高效运行。电源监控系统在电源维护管理中的应用,标志着传统人工看守的维护管理模式向以计算机技术为基础的智能化、自动化的集中管理模式转变。电源监控系统已从简单的监控功能发展到具有三遥和报警功能,具有较完备的管理和远程监控功能的系统。利用单片机SST89E516RD实现直流电源"四遥"和报警功能,并采用TC35i实现短消息方式的信息传输。 2系统硬件设计 2.1硬件电路设计 直流电源系统需要采集多路模拟量、数字量并要求多路空节点和0 V~4 V的可调电压输出,即"四遥"功能。监控单元有两个串行口,一个用于连接智能设备,另一个用于和TC35i通信。监控单元还需要键盘和液晶显示。根据以上需求,系统需在单片机最小系统的基础上增加较多外设。采用带双串口的单片机减少外设数量,则增加系统成本,而且限制单片机本身的通用性。本文采用普通单片机外扩串口和RAM,并采用GAL16V8产生多个总线设备片选。其硬件原理图如图1所示。 2.1.1单片机 单片机采用通用的SST89E516,是基于8051内核带64 KB的Flash单片机,3个16-bit定时器/计数器,1个UART,36个GPIO,支持ISP;看门狗电路、时钟电路和掉电保存电路采用FM3104。FM3104是RAMTRON公司推出的一款高性价比的集成器件,内部集成看门狗、低压检测、定时器、时钟电路和铁电存储器。采用I2C通信。时钟电路和铁电存储器分别为两个地址,其中铁电存储器用于存储系统参数,如告警号码、遥测告警越限值等。 2.1.2 TC35i接口电路 西门子的TC35i是一个支持中文短信息的工业级GSM模块,其频段为双频GSM 900 MHz和GSM1 800 MHz,支持数据、语音、短消息和传真。系统采用16C550扩展一个串口,以TTL电平的串行口方式和TC35i通信。TC35i必须在ICT引脚设置启动电路,单片机采用中断方式接收16C550数据。 2.1.3显示、键盘电路 显示电路采用128×64液晶。液晶的接口片选由GAL16V8确定。为了简化系统设计,键盘采用集成电路ZLG7290,单片机与ZLG7290的通信采用I2C通信方式。 2.1.4模拟信号采集电路 模拟信号采集电路是由整定、隔离和转换3部分组成。不同的模拟信号整定电路部分不同,例如直流电压采用精密电阻分压法将0 V~400 V电压整定为0 V~4 V;而交流电压则采用电压互感器整定为0 V~4 V;隔离电路采用线性光耦。 整定过的模拟信号经限压处理,一并输入多路开关。然后经过压频转换(V/F)后输入CPU处理。V/F转换采用集成电路AD654。AD654是美国模拟器件公司的一款低成本、8引脚封装的电压频率(V/F)转换器,其单电源电压为4.5 V~36 V;双电源电压为5 V~18 V;输出频率范围为0 kHz~500 kHz;线性误差为0.06%(250 kHz时);输入阻抗为250 MΩ;其输入电压范围为单电源为0 V~Vs-4 V,双电源为-Vs~Vs-4 V。 2.1.5数字信号采集电路 数字信号采用TLP521隔离后送至总线驱动器74HC244。GAL16V8产生74HC244片选,单片机每隔10 ms查询采集数字信号,并加入去抖动处理。 2.1.6空接点输出电路 空接点用于实现直流模块的开关机以及其他设备的控制。采用5 V继电器输出空接点信号。5 V继电器控制也由总线控制。数据口经74HC273和MC1413驱动后控制继电器。GAL16V8产生74HC273片选,可扩展多个空接点。 2.1.7模拟电压给定 模拟信号给定采用数字DS1845电位器分压实现。数字电位器将2.5 V基准电压分压后叠加总限流电压信号,放大输出作为直流模块调节电压的基准。数字电位器DS1845是Dallas Semiconductor推出具有永久性存储器的双电位器,该产品结合了两种线性电位器和256位EEPROM,通过两线接口,为电位器输出、配置设定及电路内编程提供了永久性的存储能力。 2.2电路可靠性设计 2.2.1屏蔽,隔离和吸收 本系统设计的通信线路均采用屏蔽双绞线屏蔽外界干扰,并进行光电隔离。并将各范围内的模拟量输人信号统一转换为0 V~4 V的电压信号送至A/D转换器,为了提高系统抗干扰能力,采用差动放大器和隔离放大器。模拟量输出采用光电隔离。这样,在环境噪声较强且各测点间可能存在有较大的共模电压时,现场信号线及各路信号线之间的绝缘良好。同样,开关量输入和输出分别采用光电隔离和继电器隔离,以提高系统的可靠性。在通信的输入端,直流电压输入端和交流电压输入端均增加了TVS吸收浪涌电压。 2.2.2接地 信号接地保证同一逻辑系统的信号逻辑准确,消除同一逻辑系统的不等电位带来的干扰,保护接地保证了系统各部分的安全工作。系统机壳可靠接大地。而数字信号地和模拟信号地单点连接。信号地和大地采用3KV102电容连接。 3系统软件设计 3.1软件设计思路 采用实时操作系统,即定时器T0产生10 ms中断,利用10 ms中断计数分别产生200 ms、500 ms和1 s任务。系统软件模块框图如图2所示。 3.2短消息模块无线传输 短消息模块无线传输分为告警信息主动上传和被动召唤。告警信息是主动上传,而遥控、遥测和遥调则是通过短消息召唤或控制实现的。告警信息处理流程如图3所示。 告警分为遥信告警和遥测告警。遥信告警实现方法:定义若干位为告警位,需产生告警的遥信接至该位置上,一旦触发该位置遥信,则产生告警信息。而遥测告警是每秒钟将遥测信息与设定的遥测告警上下限相比较,当多次越限后则产生报警。反之取消告警。 告警发送方法:CPU将不同的告警存储在发送队列中。当发送队列不为空时,通过短消息模块每秒钟发送一条短消息。 短消息模块的告警信息必须以汉字发送。而每个汉字采用UNICODE编码,占两字节,如"电0x7535子0x5b50"。将汉字转换成UNICODE编码在单片机下编程比较困难。因为直流电源监控的告警信息有限,并且微软的操作系统提供该类函数,所以需将所有用到的汉字以表的方式写入代码空间。根据直流系统不同的告警代码直接查取告警信息的UNICODE编码。遥控遥调信息处理流程如图4所示。 因为每条短信息发送长度有限。所以遥控、查询测量信息采用ASCII方式。短消息传输的号码、短消息中心号码和汉字的UNICODE编码必须经PDU编码后才能发送。 遥控、查询测量信息是以TEXT方式发送。当短消息模块接收下列格式的短消息后,并且密码正确,就将召唤直流电源信息按照接收号码返回短消息或者下发遥控命令,返回控制结果。 短信内容格式:";密码;功能码(;内容1)(;内容2)(;……)"。其中,密码为6个字符/数字;功能码包含2个字符,如表1所列;内容长度不定。如:查询系统测量信息短信内容格式:";1234156;01";遥控设备开关机格式:";123456;02"。4 结束语 本系统设计实现直流电源的遥控,遥调输出和遥信、遥测输入。针对直流电源传输信息少的特点扩展了短消息模块,为直流电源监控设计了无线传输方案。基于短消息传输的电源监控系统无需构建额外的无线通信网络,而是通过现有的覆盖面广,运行稳定的网络进行专用的无线数据传输。对于覆盖面广、监测点分散、无人值守、传输数据量有限而又必须要监控的设备而言,基于短消息的电源监控系统是最佳选择方案。

    时间:2018-11-08 关键词: 远程 蓄电池 直流电源 电源技术解析 电源监控

  • 晶体管线性直流电源,可控硅直流稳压电源,开关电源原理简介

    晶体管线性直流电源,可控硅直流稳压电源,开关电源原理简介

    关于稳压电源|0">稳压电源电路结构,究竟是晶体管线性直流电源,可控硅直流稳压电源和是开关电源,要根据具体场合,合理采用。这三种电路,国际国内都大量使用,各有各的特点。可控硅直流稳压电源,以其强大的输出功率,晶体管线性直流电源和开关电源无法取代。晶体管线性直流电源以其精度高,性能优越而被广泛应用。开关电源因省去了笨重的工频变压器而使体积和重量都有不同程度的减少,减轻,也被广泛地应用在许多输出电压、输出电流较为稳定的场合。 一、可控硅直流稳压电源的电路结构如下: 可控硅是一个控制电压的器件,由于可控硅的导通角是可以用电路来控制的,固此随着输出电压Uo的大小变化,可控硅的导通角也随着变化。加在主变压器初级的电压Ui也随之变化。 也就是交流220V市电经可控硅控制后只有一部分加在主变压器的初级。当输出电压Uo较高时,可控硅导通角较大,大部分市电电压被可控硅“放过来了”(如上图所示),因而加在变压器初级的电压,即Ui较高,这当然经整流滤波后输出电压也就比较高了。 而当输出电压Uo很低时,可控硅导通角很小,绝大部分市电电压被可控硅“卡断了”(如下图所示),只让很低的电压加在变压器初级,即Ui很低,这当然经整流滤波后输出电压也就很低了。 二.晶体管线性直流电源的主电路如下: 晶体管线性直流电源实际上是在可控硅直流稳压电源的输出端再串一只大功率三极管(实际是多只并联),控制电路只要输出一个小电流到三极管的基极, 就能控制三极管的输出大电流,使得电源系统在可控硅电源的基础上又稳压一次,因而这种晶体管线性直流电源的稳压性能要优于开关电源或可控硅直流电源1-3个数量级。但功率三极管(亦称调整管)上一般要占用10伏电压,每输出1安培电流就要在电源内部多消耗10瓦功率,例如500V 5A电源在功率管上的损耗为50瓦,占输出总功率的2%,因而晶体管线性直流电源的效率要比可控硅直流稳压电源稍低。 三、开关电源的主电路如下: 由电路可以看出,市电经整流滤波后变为311V高压,经K1~K4功率开关管有序工作后,变为脉冲信号加至高频变压器的初级,脉冲的高度始终为311V。当K1,K4开通时,311V高压电流经K1正向流入主变压器初级,经K4流出,在变压器初级形成一个正向脉冲,同理,当K2,K3开通时,311V高压电流经K3反向流入主变压器初级,经K2流出,在变压器初级形成一个反向脉冲。这样,在变压器次级就形成一系列正反向脉冲,经整流滤波后形成直流电压。当输出电压Uo较高时,脉冲宽度就宽,当输出电压Uo较低时,脉冲宽度就窄,因此开关管实际上是一个控制脉冲宽窄的装置。 在没有特别体积要求的情况下,一般向用户提供晶体管线性直流电源,这主要是: 1、晶体管线性直流电源精度好(优于开关电源或可控硅电源1—3个数量级),适用多种场合,一般用户不会提出性能、精度、技术指标方面的问题。 2、便于维修,因为多数用户都有熟悉晶体管线性直流电源的维修人员,也有这方面的备件。维修工具,有一只万用表即可基本解决问题,较为细心的电工亦可动手。 3、维修后一般不留后遗症,故障能彻底排除,性能可完全恢复,只要正确使用,及时维修,一台电源使用10年是完全不成问题的。 在没有特别体积要求的情况下,不向用户特别推崇开关电源,这主要是: 1、目前制作开关电源所采用的各种PWM集成芯片,主要是从输出电压变化范围小,输出电流较为稳定的角度来设计的。 但所谓PWM芯片,是一种脉宽调制器,当输出电压较高,输出电流较大时,电源内部的开关管开通时间较长而关断时间较短: 而当输出功率较小时,脉冲宽度就较窄: 但这种脉冲宽度不是可以无限制的变窄的,脉冲宽度的变化范围,即调节范围仅是10%—90%。这一特点决定了这种PWM芯片,并不适用于一个从0电压起调的所谓连续可调的电源。例如一台500V5A的开关电源,当它输出达500V5A时,控制脉冲最宽,形如: 而当输出电压降至50V5A时,控制脉冲的宽度降到最宽脉冲的10%, 形如: 这已降到最窄了。 如果输出电压电流继续下降,要求控制脉冲继续变窄,但PWM电路已无法满足,这时电路变为间歇工作, 形如: 脉冲时有时无,一阵一阵的,电源内会发出噪音,纹波等也会变大,电性能变差,所谓“低端不稳定”,事实上已经成为不合格品。为了解决这一问题,我公司采取新的技术措施,才能较好地解决(因篇幅有限,不再详述)。 2、开关电源具有污染电网和幅射干扰。在大功率开关电源附近插上一台收音机,收音机是无法收音的,对电视信号也会有干扰。有些单位的仪器仪表出现莫明其妙的干扰,和这种电网污染不无关系。对这种干扰和幅射,国家标准中都有严格规定。 3、维修较为困难,整机报废的风险大。 开关电源由于在高频下运行,频率越高,主变压器越小,但随着频率的升高,各种分布参数负面作用也明显的显露出来。因此要求分布参数越小越好,工艺设计精湛,引线尽量短,元器件尽量靠近。由于元件密集,给维修带来一定难度。另外,由于电路与线性电源截然不同,维修人员的技术素质要求较高,万用表已无济于事,要用示波器才能观察到电路各点的工作状态。 更为重要的是,由于开关功率管处在高压下工作,一旦损坏一般都是4只,即全部坏光,发出响亮的爆炸声,而且进一步烧坏产生控制信号的脉冲变压器,因而又波及到印制板,几乎是烧了一片,只要有一如果这样,整个电源报废的风险就大了。 4、由于目前国内外市场上能够买到的用于开关电源的主要元器件,如开关管,整流二结管,磁芯变压器等,其输出功率都极其有限,一般制作电压在300伏以下,功率在2KW—3KW之间的开关电源尚能应付,否则对如开关管,整流二结管,磁芯变压器等就要采取多个并联的办法来解决,这就大大地降低了整机的可靠性。一些厂家试图生产1000A的开关电源,其结果是损坏率高得惊人。因此开关电源在特种电源的行业内并无多大的用武之地。

    时间:2018-10-29 关键词: 晶体管 开关电源 稳压电源 直流电源 电源技术解析

  • 浅谈电源模块与直流电源的应用

    电源模块在现代电子制造业中,已经开始慢慢成为主流的电源类电子器件。因变更灵活、设计简单、可靠性高,而被广泛应用在于交换设备、接入设备、移动通讯、微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。 直流电源是维持电路中形成稳恒电流的装置,适用于大型发电厂、水电厂、超高压变电站、无人值守变电站作为控制、信号、保护、自动重合闸操作、事故照明、直流油泵、,各种直流操作机构的分合闸,二次回路的仪表,自动化装置的控制交流不停电电源等用电装置的直流供电电源。电源模块是可以直接贴装在印刷电路板上的电源供应器,其特点是可为专用集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一、隔离:1、安全隔离:强电弱电隔离IGBT隔离驱动浪涌隔离保护雷电隔离保护(如人体接触的医疗电子设备的隔离保护)2、噪声隔离:(模拟电路与数字电路隔离、强弱信号隔离)3、接地环路消除:远程信号传输分布式电源供电系统二、保护:短路保护、过压保护、欠压保护、过流保护、其它保护三、电压变换:升压变换降压变换交直流转换(AC/DC、DC/AC)极性变换(正负极性转换、单电源与正负电源转换、单电源与多电源转换)四、稳压:交流市电供电远程直流供电分布式电源供电系统电池供电五、降噪:有源滤波直流电源的作用直流电源[英] DC powerGZD、GZD(W)型可控硅高频开关直流电源系统应用范围:PowerLeaderTM系列高频开关直流电源系统适用于大型发电厂、水电厂、超高压变电站、无人值守变电站作为控制、信号、保护、自动重合闸操作、事故照明、直流油泵,各种直流操作机构的分合闸,二次回路的仪表,自动化装置的控制交流不停电电源等用电装置的直流供电电源。PowerLeaderTM系列高频开关直流电源的单线原理:GZD(W)型高频开关直流电源由充电屏、馈线屏、蓄电池及直流电压变换器四个单元组成。充电机屏由若干电源模块和微机监控系统组成,单柜(屏)最大配置160A,若需要更大的输出电流可实现多机柜(屏)并联。馈线屏配有微机绝缘在线监察装置,当某一馈出支路发生接地事故时可显示出某地支路编号及接地电阻。电池屏内可选配微机蓄电池巡检装置,随时对蓄电池状态进行监控。直流电压变送器可采用高频直流变送器,当合闸母线在180-300V电压变动时控制线母线的输出电压都能牢牢地稳定在220V.高频开关直流电源模块的基本原理:PowerLeaderTM系列高频开关直流电源采用了全桥移相式脉宽调制软开关控制技术,使得模块效率进一步提高,谐波减小。高频开关直流电源模块采用三相三线380VAC平衡输入,无相序要求,无中线电流损耗,在交流输入端,采用先进的尖峰抑制器件及EMI滤波电路。高频开关直流电源由全桥整流电路将三相交流电整流为直流,经无源功率因数校正(PFC)后,再由DC/DC高频变换电路把所得的直流电逆变成稳定可控的直流电输出。高频开关直流电源脉宽调制电路(PWM)及软开关谐振回路根据电网和负载的变化,自动调节高频开关的脉冲宽度和移相角,使输出电压电流在任何允许的情况下都能保持稳定。JZ- 22010D系列电力高频开关电源既可单机工作完成各种基本功能,又可并联组合工作,并具有良好的并机均流效果。高频开关直流电源通过与微机连接,可实现"遥测、遥信、遥控、遥调"四遥功能。高频开关直流电源具备完善的保护功能,保证模块或模块组独立运行和微机监控下系统的安全、稳定。高频开关直流电源模块采用总线采样主、从均流控制方式。在并机运行时,高频开关直流电源模块组中能自动选出一台主模块,将分流器采集到的电流、电压等外部参数进行处理,集中控制每一台模块的输出电压、电流。从而,即使在小电流时,也能得到较好的均流效果。从上我们了解到,电源模块具有隔离、保护、电压变换、稳压、降躁等作用,而高频开关直流电源采用了全桥移相式脉宽调制软开关控制技术,使得模块效率进一步提高,谐波减小。并且高频开关直流电源具备完善的保护功能,保证模块或模块组独立运行和微机监控下系统的安全、稳定。更多电源模块信息请点击http://www.dzsc.com/product/searchfile/1837.html

    时间:2018-09-21 关键词: 直流电源 电源技术解析 电源模块 浅谈

  • 新型低纹波高压直流电源的设计方案

    新型低纹波高压直流电源的设计方案

    摘要:研究提出了一种新型的低纹波高压直流电源电路结构,该电源采用电压互补的工作原理,将两路独立输出电压相同、相位相差90°的半桥逆变电路并联后输出,使其输出电压并联互补,以达到减小直流输出电压脉动的目的。在介绍该电源工作原理和控制方式基础上,并依据该方案研制了一台小功率样机,结合实验波形,证实了该方案的可行性。0 引言高压直流电源已越来越广泛的应用于工业、医学、核物理、检测等领域。对于X 光机,粒子加速器,电子束焊机,电子束曝光机等一些应用场合,对电压的水平要求比较高,它们均要求低纹波电压。文章[5]对几种用于高压直流电源的电路拓扑结构分别进行了介绍,并对它们进行了比较,指出了各自的优缺点。近年来,随着新的电力电子器件的应用使得高压直流电源出现了频率高,效率高,功率密度高,可靠性高等新特性。高频化可以提高电源性能,减少变压器的体积和纹波系数,但也带来了新的技术问题。过高的频率会导致开关管开断频繁,开关损耗增大,影响开关管寿命并使整机效率下降。鉴于以上问题,本文采用双路电源并联输出的方法得到低纹波直流。在开关管频率受限的今天,本方法可以在频率较低的情况下得到低纹波直流。1 主回路工作原理电源的系统框图及主回路原理图别如图1 和图2 所示。图1 系统框图图2 电源主回路原理图 主电路含有两套完全相同的半桥逆变电路,逆变开关元件选用IGBT.每一路均采用独立的三相全控整流桥供电,逆变电路采用PWM 方式,工作频率远高于谐振频率, 逆变后的电压波形为方波。 电路的功率调节通过控制全控整流桥的移相角来实现。IGBT 的触发脉冲参数:0 kHz~20 kHz、占空比45%,-5 V~+15 V,上下桥臂脉冲相差半个周期如图3 所示,两路半桥逆变电路的输出波形如图4 所示。将两路电压并联,即可得平直电压。图3 IGBT 触发脉冲波形图4 输出电压波形示意图输出纹波和输出电容的关系为:可见,加大输出电容值也可以减少纹波,或者采用多个电容并联的方式减少ESR 值。2 电压跟踪电路由于采用两路输出并联来获得平直的直流电压, 设备正常工作的关键问题是两路并联电源的电压平衡问题,即要求两路输出的电压幅值时刻保持相同。为使两路输出保持一致,元器件参数应选取一致,还需要一套输出电压检测、比较及自动调节电路,实际设计的电路工作过程如图5 所示。图5 电压跟踪电路结构框图 在检测电路中主要包含隔离和离散化两部分电路,隔离电路可以有效地抑制系统噪声, 消除接地回路的干扰。把检测到的输出电压离散化是为了解决当相近的模拟量直接比较时运放输出抖动的问题, 同时可以使后面的比较电路的反应速度调节方便。在离散化电路中具体由锯齿波来调制经过隔离的输出电压来实现。它将检测到的电压信号,转化为脉宽与其电压成正比的方波信号。在具体应用中,应根据频率范围来设计合理的RC 滤波电路。滤波器的输出与其输入之比β 为:当β≈1 时:即:3 实验结果应用本方案试制了一套小功率系统,以此来验证电路的可行性。为了方便调试,样机采用晶闸管整流,本样机选用西安电力电子技术研究所生产的KK200 整流晶闸管。三相电经过一个降压变压器(变比10∶1)接到2 个整流桥。三相全控整流桥输出直流平均电压为:Ud=1.35U1cosα式中,U1-输入三相线电压有效值;α-三相桥式全控整流控制角。本样机整流桥进线线电压有效值为380 V,采用三相桥式全控整流,所以整流桥输出最大直流平均电压为380*1.35 / 10=51.3 V 左右。T1、T2 变压器变比1:40,负载阻抗100 kΩ。下面给出了各路逆变频率为13 kHz 时的相关波形图:图6 实验波形图6 中所标的电压值为乘以分压器变比以后的值。图6(a) 为没有经过并联的两路分别输出时的电压波形,可以看到,单路电压输出存在缺口,而且缺口处脉动较大,并有一定的毛刺。图中6(b)为两路并联后输出的电压波形(未经电容滤波),与图6(a)相比较,可以清楚地看到两路并联后,大的缺口在输出波形中消失,输出电压脉动明显减小,纹波变低,达到了实验目的,验证了设计思想的正确性。4 结论通过小功率试验的验证,证明了该方案的可行性,采用本方案可以在较低的工作频率下达到输出低纹波直流电压的目的,可以减小半导体开关元件的损耗,提高元器件使用寿命和设备的稳定性,同时对控制等辅助电路的要求也降低;另外并联后输出电压的脉动频率高且幅值小,容易滤波,所以可以减小输出端的滤波电容。由于电路是两路电源并联的结构,可以提高电源的输出容量。4次

    时间:2018-09-20 关键词: 设计方案 直流电源 电源技术解析 高压

  • IT6900A直流电源完成多种测试的解决方案

    IT6900A直流电源完成多种测试的解决方案

    传统意义上的电源功率为电压和电流的乘积,而根据市场调查,发现工程师往往需要频繁更换使用不同规格的电源以测试多种规格的产品,整个过程非常繁琐,也使设备成本居高不下。如何在实验室利用一台电源完成多种规格产品的测试,并且使控制方式更加灵活多样,是广大研发和设计验证人员所非常关心的问题。ITECH推出的IT6900A系列直流电源,完全针对传统电源的不足而设计,一台电源能够替代多台不同型号的传统电源使用,覆盖了各个不同行业不同规格产品的测试需求,同时可在测试中提供与线性电源相媲美的高精度。一台电源完成多种测试的解决方案1. 宽范围输出现有两个待测的电源产品,第一个待测电源的规格为50V/2A;第二个待测电源的规格为25V/4A,这样可能需要两台不同规格的100W电源或者一台成本更高的50V/4A/200W以上的电源进行测试,虽然成本很高,但仍然不便于工程师对试验状态随机调整,也不利于实验室仪器的灵活配置。艾德克斯提供的测试方案,是利用IT6900A系列直流电源的宽范围设计来解决这一难题。其中功率为100W的型号,其规格为60V/5A.首先,设置IT6900A电源的电压为50V,在这种情况下,电流将自动设置为2A,完成第一个待测电源的测试;接着,设置IT6900A电源的电压为25V,电流同样自动设置为4A,就可完成第二个待测电源的测试。这个方案在最大限度的节省实验时间和设备成本的同时,也保证了测试数据的高可靠性。2. 智能化可编程在汽车电子领域产品的测试中,测试的步骤相对较为复杂,例如,针对一款汽车喇叭的测试中,工程师需要一台可编程电源来测试喇叭的特性,比如测试过程如下:连续10分钟供电13V之后,检测喇叭的音质等性能,和启动试验1S 13V on,4S off,循环100之后检测喇叭的性能。如果要完成这个测试,艾德克斯的电源可提供最简单、最快捷的方法。客户可利用艾德克斯的IT6900A系列宽范围直流电源的可编程特性,配套功能强大的软件,组成最佳的测试方案。在实验开始之前,先按照实验需求对IT6900A系列电源进行编程,编程的方式也可根据实际情况进行多样的选择,如在电源的面板上编程,或利用内置的标准RS232/USB/GPIB接口进行远程通讯,在计算机上进行编程的操作。电源快速收到工程师编好的程序指令,汽车喇叭的测试即可按照预定的程序自动进行,软件就会实时记录这一时刻的电压、电流数据,并显示、记录在计算机的软件监控界面上。与此同时,由于IT6900A系列直流电源具有丰富的SCPI指令,可以方便的组建智能切换化测试平台,这对于有二次开发需求的测试显得尤为重要。3. 超低纹波对于DC-DC的开关电源等设备,工程师在测试时会担心测试仪器产生的纹波会与待测设备本身的纹波叠加,从而测试结果与实际情况有较大偏差。在这种情况下,同样可使用艾德克斯IT6900A系列的直流电源来进行测试。因为该电源的电压和电流的纹波系数分别为≤5mVp-p和≤5mArms,所以工程师在测试时不用担心纹波叠加而影响待测设备的纹波特性。4. 抑制突波电流和OCP功能LED是一个特殊的电子元器件,作为恒流源的LED产品对于电流有很高的敏感度。而大部分的电源供应器在启动瞬间都会有一个突波电流产生,有可能会损坏待测物,尤其是像LED这样对电流高度敏感的产品。故不适合用于这类产品的测试。 艾德克斯IT6900A系列直流电源,启动瞬间有抑制突波电流的功能,所以可完美应用于LED相关产品的可靠性测试。艾德克斯IT6900A系列直流电源有效抑制突波电流的功能,下图可具体说明:上图左边为选取的一般电源供应器测试LED产品,通过示波器获得的电流波形,有明显的突波电流;右边为艾德克斯IT6900A系列直流电源测试该LED产品获得的电流波形,电流平滑,在启动瞬间无突波电流产生,故用于LED产品的可靠性测试,可保护电流敏感度极高的待测产品。在老化测试方面,IT6900A系列直流电源的OCP保护功能,能够在长时间的老化过程中保护正在进行测试的LED产品,以防其被老化期间不可避免的异常电流烧坏。一旦电流异常变大,电源就会进入OCP保护状态,并停止输出。5. 同功率体积超小随着电子产品的不断发展和升级,在实验室测试时使用到的设备和仪器也在增多,很多工程师因为在测试中使用太多设备而对测试仪器的尺寸要求越来越高。艾德克斯的所有电源和电子负载产品均为标准尺寸,方便桌面使用和上架安装,在尺寸体积上面可最大程度的满足工程师们的需求。以艾德克斯IT6900A系列直流电源为例,在市场上同功率的同类产品中,它具有超小的体积。如IT6952A 、IT6953A这两个型号产品,仅2U的超小体积就具有600W的功率,使得测试应用更具灵活性。总结以上几个案例是艾德克斯IT6900A系列直流电源的几个应用实例,在与此相关的其他行业测试中,此电源还有更多的测试方案。IT6900A系列直流电源,除了可以一台电源完成多种测试,它还保留了诸多硬件及功能设计方面的优势,如功能键内发光方便较暗环境下操作、标准化尺寸可轻松上机柜安装等。艾德克斯IT6900A系列系列电源的设计理念,是让各个行业的工程师不论进行何种测试,它都能带来最完美的测试方案。

    时间:2018-09-19 关键词: 解决方案 直流电源 电源技术解析 多种

  • 浅谈UPS与直流电源的在线维护及管理

    UPS和直流电源是企业重要的供电保障设备,传统的维护管理包括:①日常巡检外观,定期更换电池、滤波电容、风机等易损件,大修时做电池活化等;②改造或采用换代设备,使用高级工具测试电池性能。这种管理方式企业投入成本高,维护人员工作量大,不易实时掌握设备运行状态和关键数据,设备事故预防能力低。实施在线维护管理可避免传统方式的不足之处,获得良好效益。下面介绍某企业实施实例及注意事项。 一、计算机在线维护管理系统 (一)系统组成 1、总控站(后台)。由监控站、工程维护站、系统接口等构成,运用管理分析软件处理接收的数据并通过Web发布。工程维护人员登录服务器可查看全厂所有在线设备的运行状态以及完善的历史、实时数据分析统计。 2、现场设备控制站(ES)。根据现场设备需要,可选择监控功能仪或设备运行状态信息彩集仪(EII)。EII通过RS-232/485端口与电能表、电池采集模块、直流屏、UPS等智能设备通信,将监测数据转换为符合通信协议的数据包,接入局域网,传送至主控室服务器。独立完整的ES包括以下部分。 (1)系统主机。由下行串口通道、数据处理器、显示器、上行串口通道组成。下行串口通道通过RS-485总线访问电池电压采集模块,采集数据,管理电压采集模块,数据处理器完成数据解压、数据计算、存储管理,将处理后的数据一部分送往显示器,另一部分由上行串口通道发送至协议处理器,或传给上一层管理系统。 (2)数据采集模块组。可根据用户需要确定采集数据要求及配置相应采集仪器,一般由电池电压采集模块、电流、温度、功率等组成,模块间隔离良好、绝缘性强,可靠性、安全性高。数据采集可分组,每个模块可对一定数量电池进行电压采集,可配备电流、温度传感器,模块间与系统主机一般采用RS-485连接。 (3)协议处理器。具有协议处理程序的接口板,处理各种通信协议。可实现:①将主机发送的电池电压、电流、温度等信息按约定协议编码、打包、发送至远程服务器;②将远程服务器发出的遥控、遥调指令经过解码发给主机,实时控制。 (4)放电模块。可快速测出电池直流内阻,瞬间测试电池性能,大功率放电模块可提供瞬间大电流冲击负荷。 (5)远程服务器。实现局域网内计算机数据通信,通过局域岗远程访问现场的蓄电池监测系统,接收、分析数据,通过Web服务器发布数据。 3、通信网络。联网现场设备各分站(采集监控站),采用光纤作为数据通信主干线,组成全厂UPS和直流电源在线监控的局域网。(二)系统主要功能 1、台账管理。集成各站UPS、直流系统、蓄电池信息设备及查询功能。可查询每台UPS、直流设备的每节电池电压、平均电压、整组电压、充放电电流、环境温度等实时、历史数据,以曲线和柱状图方式显示,或生成报表打印。 2、实时分析。对选定时间段内的电池运行状态、历史数据进行分析,当某个蓄电池被放过电,满足一定电流范围和时间(大于设置值)时,系统将对蓄电池进行电池容量评价(容量估算)。 3、报警指示和查询。可对每台UPS、直流电源故障进行报警,提供报警查询,以便及时处理。 4、网络化。系统具有远端通信和遥测、遥信、遥控功能,使远程服务器通过以太网对各站UPS、直流电源、蓄电池监测系统进行实时监控与数据管理。还可根据企业需要,与其他系统联网,采集一些重要设备的信息,实现更多功能。 二、系统应用注意事项 认真查清企业内部UPS和直流电源现状以及企业现有网络规模,根据设备功能和重要性合理配置。 1、确定网络构架方案,即企业是否有必要建立完整网络系统或在现有网络基础上构建,对单个电池组也可实现完整、独立的在线维护管理。 2、以在线管理系统为核心,辅以必要人工测试,可降低管理成本,大站、关键设备直接采用完整系统,小站、单体UPS等经后台机处理形成整体维护管理系统。 3、有些UPS和直流电源已具备多种管理功能,如状态参数、状态记录、报警等,合理配置不仅降低开发成本,还可减少线路过多带来的故障隐患。 4、维护管理系统只进行监视,建议控制指令(如故障处理、切换、活化等)的发出由人工实施。 5、系统建立后,可在有人值守的地方设监视站,由操作人员实现全天候运行状态监视,维修人员要定期查阅管理。 6、要预留接口和协议以便兼容其他系统,系统上层管理也可建在企业已有网站上。 7、建议状态管理系统与过程控制或执行系统分开,注意相互间独立性,不要相互干扰。 8、系统建立后要有工作制度和管理机制,确保正常使用。 UPS和直流电源在线维护管理系统确保了企业安全、稳定生产,将传统维修转变为状态维修,减少了很多维修成本,增加了企业效益。 编辑:博子

    时间:2018-09-17 关键词: 接口 直流电源 电源技术解析 ups 维护管理

  • 如何为通信结构设备挑选合适的电源供应设计

    如何为通信结构设备挑选合适的电源供应设计

    通信结构设备采用的电源供应系统由多种不同的元件组成。已校正功率因素 (PFC) 的交流/直流电源供应器在前端部分设有负载电流共用及冗余核对功能 (N+1),可为紧密聚集在后端部分的高效率直流/直流模块及负载点转换器提供馈电。我们必须采用极具能源效益的电源供应系统设计,才可为高电压模拟电路提供供电,以及为高速数字通信特殊应用集成电路 (ASIC) 及现场可编程门阵列 (FPGA) 芯片提供高度稳定的低压供电。由于不同系统对电源供应器有不同的要求,加上通信市场也一直在变,而且变化相当大,令通信设备制造商不得不进一步节省生产成本,也不得不采用更具能源效益和更加可靠的电源供应解决方案,以保持他们在市场上的竞争优势。由于目前的营商环境充满挑战,因此全新的电压分配总线标准便应运而生,最近推出的 +12 伏 (V) 中间总线结构 (IBA) 便是一个好例子。我们只要采用低成本的无稳压 (开放环路) "砖"型转换器 (brick),将 -48 伏总线转为标准 +12 伏中间总线,便可使用新一代的低成本负载点 (POL) 模块。这些采用单列直插式封装 (SIP) 及表面安装元件 (SMD) 封装的小型负载点模块可为系统的不同负载提供低压供电,而且这是一个极具成本效益的方案。但这些新一代的负载点模块还要面对不断涌现的竞争对手,例如分隔混合式电源供应系统,其中包括采用级联电流馈送或电压馈送推拉式转换器的系统。有些半导体供应商更特别为设计电源供应器的工程师提供设计支持,使他们可以将低成本的小型分隔式电源供应器直接嵌入主机板或线卡内。美国国家半导体新推出的高集成度 100 伏高电压功率特殊应用集成电路 (ASIC) 如 LM5041 级联脉冲宽度调制 (PWM) 控制器及 LM5030 推拉式脉冲宽度调制控制器不但可将所需的外置元件数目减至最少,而且也可将印刷电路板的面积尽量缩小。该款级联转换器能够直接利用 -48 伏总线提供的供电,以产生多个低电压输出,整体效率比利用 +12 伏中间总线转换器提供供电的负载点转换器高,而成本则更低。究竟应选用现成的负载点模块与中间总线转换器模块,还是采用半导体厂商的嵌入式电源供应参考设计,以降低成本及提高效率?关于这个问题,设计电源供应器的工程师必须从中做出取舍。信息设备制造商开发新一代的低成本设备时,都比以往更为认真地研究成本、设计的复杂程度和不同风险的取舍。如果采用电源开关及内置的磁变压器会令个人电脑电路板的设计过于复杂,即使嵌入式电源供应解决方案很明显可以大幅节省成本及能源,始终会有部分厂商为不招致麻烦而拒绝采用这类嵌入式的电源供应解决方案。对于设计较为简单而又只需提供一个供电电压的电源供应系统来说,加设变压器所涉及的额外成本实在微不足道,而且也不会令设计更为复杂。但需要输出多个不同电压的电源供应系统在设计上便显得较为复杂,特别是需要采用设有多个次级线圈、令设计更为复杂的变压器。需要提供多个电压输出的设计也可采用较为复杂的稳压电路,利用其可以感测多个电压输出的功能控制反馈环路。网络电话 (VoIP)、数字用户线路 (DSL) 以及第三代移动电话基站的电源供应设计都必然有不同程度的复杂性。有多个因素会影响这三种电源供应设计的表现,我们将会在下文一一讨论。网络电话 (VoIP)网络电话的直流/直流转换器采用不太复杂的高功率单输出变压器设计 (典型电压介于 250W 与 500W 之间),以便为主 -48 伏电压分配总线提供缓冲。配电式总线的电压若要保持平稳,便需采用笨重的电容器,以便将 36 至 72 伏的传统操作电压范围缩窄至 43 至 57 伏之间,而采用单电压输出变压器的设计可将笨重电容器的成本及电容减至最少。所有下向变频器或配电式总线上的其他负载也具有故障保护及安全隔离等功能。我们若采用可支持多个并行输出及负载电流共用等功能的直流/直流转换器,便可以提供故障承受 (N+1) 及散热功能,有助降低系统操作时的温度,使系统更耐用,性能更可靠。一般来说,网络电话转换器需要的电源供应电路布局设计必须具备性能卓越 (高转换效率,极低线路电流)、容易使用、具成本效益、以及外形小巧纤薄等优点。目前市场上有多种不同的布局设计可供选择,每一种都在某一程度上可以满足这些要求。例如,回扫转换器便以其布局简单而甚受欢迎。回扫转换器与降压转换器 (如正向转换器) 不同,回扫转换器无需采用变压器磁通复位机制或输出电感器。回扫转换器虽然拥有这些优点,但用于某些应用方案时 (尤其是高输出电压系统如网络电话应用方案),便需要加设昂贵的电容器,才可在输入及输出端过滤较大的纹波电流,这是回扫转换器的缺点。但我们只要在反相位内交错使用两个转换器,便可减低纹波电流,将回扫及正向转换器的纹波电流问题缓解。若所有因素 保持不变,交错系统的输入及输出纹波电流远比那些采用一个转换器的系统少。对于网络电话系统来说,推拉式转换器 (图1) 是一个成效远比回扫转换器理想的解决方案。推拉式转换器基本上由两个交错的正向转换器组成,但其中只有一个可自行复位的变压器以及一个输出电感器。以此来说,推拉式转换器只比一个独立的正向转换器稍微复杂一点,其纹波电流因为交错效应的关系而得以大幅减少,也因为这个缘故,推拉式转换器可以使用较小型的输入电感器。由于输出电感器会将输出纹波电流减弱,因此推拉式转换器可以使用额定纹波电流较低的低成本电容器。一般的回扫转换器只适用于不超过 150W 左右的功率转换,但推拉式转换器可以在高达千瓦的功率水平下正常操作,而且成效令人满意。此外,需要发挥更高转换效率的网络电话系统可以采用较为复杂的布局,以确保输入电压处于两个极端时,系统仍可发挥极高的效率。设有电流馈送推拉式转换器的级联降压布局设计便是一个好例子。(注意:最适用于这种布局的 LM5041 专用脉冲宽度调制控制器已有大量现货供应。) 这个混合布局最适合高功率的系统采用。此外,这个布局也适用于高效率及高性能的系统,由于采用这个布局 会令效率及性能有所提升,因此即使成本较高也是值得的。图 1适用于网络电话 (VoIP) 应用方案的推拉式转换器数字用户线路 (DSL)数字用户线路 (DSL) 的应用方案可以采用以 -48 伏供电提供多个电压输出的转换器。这个转换器内含一个设计更复杂、功率更低的多输出变压器 (50-100W)。这种 DSL 电源供应系统可以为高压模拟线路驱动器及放大器提供供电 (典型电压为 +/-12 伏),也可为特殊应用集成电路提供多个低压供电 (+5 伏、+3.3 伏、+1.8 伏及 +1.5 伏)。设有多输出 DSL 转换器的电源供应系统必须采用高性能的布局设计,例如可以支持高转换效率以及具备卓越的负载与线路稳压能力,而且必须设计简单、成本低廉、以及外型小巧纤薄。我们只要选用合适的布局设计及控制电路,便可确保 DSL 电源供应系统的性能达到我们的要求。DSL 电源供应系统所采用的布局若能获得具备崭新功能的新一代控制器芯片的支持,将有助减少所需元件的数目,以及节省电路板的板面空间,使系统设计可以进一步精简。小型电源供应器的设计一般都会采用印刷电路板 (平面) 变压器、输出电感器及表面贴着输入与输出电容器。多输出电源供应器一般都需要装设一个多输出回扫转换器。虽然这样的布局最简单,但除了受控制的输出之外,所有输出都无法获得较好的负载稳压。回扫转换器的效率也不太理想,因为低电压输出的功率消耗最大,但将低电压输出加以同步整流则需要另外加设一些特殊应用集成电路,而市场上很少有这类特殊应用集成电路,因此回扫转换器的效率不易提升。图 2 显示的电源供应器结构适用于 DSL 应用方案,是一个性能比较理想的结构。其中采用的推拉式转换器负责将 48 伏电压转为 +/-12 伏电压,以及将电源隔离。同步降压转换器利用 +12 伏供电干线提供的供电产生多个低电压输出这个推拉式中间总线设计可以充分利用具成本效益的电源管理芯片如 LM5030 推拉式控制器及 LM5642 双通道电流模式同步降压控制器。LM5642 是一款高性能的芯片,每一条通道只需两枚场效应晶体管、一个输出电感器、一个输出电容器以及若干个电阻与电容器。图 2适用于多输出系统的推拉式转换器及同步降压控制器第三代 (3G) 基站第三代的基站需要采用两个转换器,以便在正常情况下以及电流中断时可以提供 +27 伏的配电总线电压。其中的一个高电压转换器直接从交流电电源获得供电,并在正常操作情况下利用所得的供电为整个系统提供电源。另一个转换器则在交流电电源中断后利用 -48 伏的备用电池继续操作。无论在设计及结构复杂性来说,这个 -48 伏的备用电池与上文提及的单输出、高功率网络电话转换器都大致相同。已校正功率因素 (PFC) 的交流/直流转换器除了为第三代基站的射频功率放大器提供 2.7 伏的典型供电电压之外,也为负载点转换器提供总线供电电压。图 3 所示的电源供应系统布局采用单转换级直流/直流转换器,以便交错使用主要的直流/交流转换器及备用电池转换器,使系统无需另外装设一个 400 伏至 48 伏的直流/直流转换器级。这样的设计有助节省成本,而同时又能提高系统的整体效率。这个设计利用内含两枚场效应晶体管的正向转换器产生 27 伏的直流总线供电电压。这个正向转换器设有两个位于上层的场效应晶体管,每一晶体管都与初级线圈连接一起,而变压器的线圈匝数有适当的数目。每当交流电的供电电压处于正确的范围内,输入电压传感逻辑电路便会启动位于顶层并连接 400 伏总线的 Q2 场效应晶体 管。若交流电电源中断,位于顶层的 Q3 场效应晶体管会自动启动,以便利用备用电池为转换器提供供电。获备用电池提供供电的配电总线为主电源传送器及 3.3 伏的"砖"转换器提供 27 伏的供电,然后再由这个 3.3 伏的"砖"转换器将供电传送予负载点转换器。图 3:第三代基站射频功率放大器的电源供应电路图总结目前市场上有多种专为电信结构设备而设的电源供应系统可供选择,以上介绍的三个方案可以刺激电源系统设计工程师的思考,鼓励他们进一步分析不同的配电结构及转换器布局。DSL、网络电话及第三代基站都各自采用独特的解决方案,显示市场上有各种不同的电源系统结构可供选择。各厂商可充分利用这些技术开发高度集成的系统。每一个应用方案都可以尽量在输入电压范围、输出数目、供电要求、成本、性能以及体积等方面突出自己的独特优势,以便为市场提供更多选择。半导体厂商正纷纷推出各种高度集成的控制器,以削减电源管理模块的成本,以及精简嵌入式转换器的设计。由于市场竞争的关系,系统成本不断有下调的压力,令厂商不得不致力开发创新的结构,而这个不断追求创新的过程便促进电源系统的布局设计不断飞跃发展。

    时间:2018-09-11 关键词: 基站 dsl 直流电源 电源技术解析

  • LM2596的不间断直流电源的设计方案

    LM2596的不间断直流电源的设计方案

    摘要:本文提出了LM2596的不间断直流电源的设计方案。该方案的设计是鉴于不间断直流电源的主要特点:在主电源断电时,电路通过继电器自动将蓄电池切入,给设备供电。在主电源正常时,以不同模式给蓄电池充电,当电压大于设定值时,恒压充电;当电压低于设定值时,恒流充电。测试结果证明该系统可以通过继电器对电路进行过流保护与欠压保护。0 引言该设计方案的指标要求:蓄电池为4.2 V,负载为5 V.为此利用开关电压调节器LM2596 进行DC-DC 变换,具有驱动能力强,线性较好的特点。该不间断直流电源的主要特点如下:主电源正常时,除可以给设备供电外,还可以以不同模式给蓄电池充电,当电压大于 4.2 V时,切断恒流充电电路,接通恒压充电电路;当电压低于4.2 V时,保持恒流充电;恒压充电由W117 和运放LM324 构成,具有输出稳定,波纹小等特点。恒流充电由大功率场管IRF640 和运放LM324组成,具有输出电流精度高,纹波小,输出电流受负载影响小等特点;若主电源断电,则自动将蓄电池切入,保持电源不间断。1 系统设计方案1.1 系统总体框图根据系统设计要求,该不间断直流电源具有:在无交流电源时,不间断给设备供电;交流电源正常时,有恒压充电和恒流充电两种模式;综合设计要求,形成系统框图如图1所示。1.2 DC-DC变换器方案的选择采用开关电压调节器LM2596,能够输出3 A 的驱动电流,同时具有很好的线性和负载调节特性,可固定输出3.3 V,5 V,12 V 三种电压,也可实现在1.2~37 V之间的可调输出。该器件内部集成频率补偿和固定频率发生器,开关频率为150 kHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。由于该器件只需4 个外接元件,可以使用通用的标准电感,这更简化了LM2596 的使用,极大地简化了开关电源电路的设计。在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内。可以用仅80 μA 的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)。DC-DC变换器电路如图2所示。1.3 恒压充电电路设计恒压充电电路如图3所示,电路由运放LM324和三端稳压器W117构成。LM324连接成电压跟随器,其输出电压U1 = U- = U+ = UX,可见输出电压可通过调节电阻R2 中间抽头来改变。由于运放的存在,使输出电压的调整非常平稳。1.4 压控恒流充电电路设计电路原理如图4所示。该恒流源电路由运放LM324、场效应管IRF640、采样电阻R3、负载电阻RL 等组成。电路采用大功率场效应管IRF640 作为调整管,该管为N 沟道增强型MOS 管,该管工作电压最高可达100 V,饱和漏极电流可达28 A,功耗约为150 W.当场效应管工作于饱和区时,漏极电流Id 近似为电压Ugs 控制的电流。即当Ud 为常数时,满足:Id = f (Ugs) ,只要Ugs不变,Id 就不变。在此电路中,R2 为康铜丝材料的取样电阻(阻值随温度的变化小)。OP07作为电压跟随器,有U+ = U - = Us,由于栅极电流可忽略不计,因此Id = Is = I2 = Us R2 =U+ R2.正因为Id = U+ R2,电路输入电压U+ 控制电流Id,即Id 不随RL 的变化而变化,从而实现压控恒流。图4中参数充电电流为200 mA.若要改变充电电流,只需调整R2 即可。1.5 直流升压电路设计设置直流升压电路的目的是将4.2 V升压为5 V.直流升压器的电路如图5所示,电路主要由新颖的DC-DC升压变换集成电路组成。LTC1872是一种超小型DC-DC直流变换集成电路,效率高达90%,低功耗状态电流为270 μA,本电路实现输入4.2 V 直流电压变换为输出5 V、最大负载电流为1 A的直流电压。该电路输出电压精度可为±4%.1.6 电压采样电路设计电压采样电路如图6所示。当充电电压U01 》4.2 V时,T1 导通,继电器常闭触点JM1 断开,常开触点JM2 接通恒压充电电路;当充电电压U01 《 4.2 V 时,T1 截止,继电器常闭触点JM1 接通,恒流充电电路工作,常开触点JM2断开,恒压充电电路不工作。1.7 继电器切换电路切换电路采用继电器控制,简洁易控,性价比高,电路如图7所示。电网电压正常时,继电器吸合K1接通,K2断开,由LM2596供电;当电网断电时,继电器释放K1断开,K2 闭合,由蓄电池供电。选用的继电器型号为HRS2H-S-DC5V-N,线圈额定工作电压为5 V,触点最大耐压值直流电压为24 V,电流为3 A.2 系统测试2.1 电源电路测试当Ui 在176~253 V时,在经过隔离变压器,整流滤波及LM2596变换器时,U03 可达到5.1 V、I0 为1 A.同时在满载的条件下,电压的最大调整率为0.24%.当Ui 为176 V时,在空载到满载的条件下,整个负载的调整率可达到 1%.当在满载时,它的纹波电压≤5 mV.在测试满载条件整个电路的效率时,它的最低效率可达到70%.2.2 充电电路测试恒流、恒压充电测试:经测试充电电路能够在满足恒流(200 mA)充电时,当电压达到4.2 V 时,会自动改为恒压(5 V)进行充电。同时蓄电池向升压电路供3~4.2 V 电压时,经过LTC1872 升压电路,可达到U02 = 5 V, I0 =1 A,便可保证经过切换电路向用电设备提供足够的电源。2.3 升压电路测试升压电路测试结果如下:从测试结果看出,升压电路工作正常。3 结语本方案所设计的不间断直流电源,主要是利用LM2596和W117等芯片,较成功地实现了设计要求的功能,电路易于实现,测试结果表明电路性能较好,符合系统方案设计要求, 整体性能稳定,具有较好的应用价值。

    时间:2018-09-05 关键词: 设计方案 直流电源 电源技术解析 不间断

  • 基于电流型PWM整流器的电子模拟负载系统研究

    基于电流型PWM整流器的电子模拟负载系统研究

    前言通常,直流电源出厂前都需要进行老化试验及电源输出特性试验,国外发达国家一般都采用电子模拟负载系统进行类似的试验,将试验过程的能量回馈电网。由于这样的系统一般都比较昂贵,因此我国只有极少数电源生产厂商在出厂考核时使用电子模拟功率负载。对于有些场合,电源的放电也可以采用由晶闸管组成的有源逆变电路来实现,但因其功率因数差,谐波含量高,不能满足相关的国际及国家的谐波标准,因而不适合大功率的应用场合。为解决这一问题我们曾经研制了利用电压型PWM整流器实现的电子模拟功率负载,它是一种利用电力电子技术、计算机控制技术及电力系统自动化技术设计实现,用于对各种直流电源进行考核试验的实验装置。尽管由电压型PWM整流器实现的电子模拟负载系统能进行恒压输出的电源系统试验,然而对于输出电压在一定范围内变化的直流电源及蓄电池电源(端电压在放电过程中逐渐下降),因为电压型PWM整流器的直流侧至交流侧具有降压的特性,所以很难设计利用电压型PWM整流器实现的电子模拟功率负载,以满足在被试电源输出电压较低时或蓄电池因放电而输出电压降低时整个范围的要求。针对上述分析,通过对电压型及电流型PWM整流器特性的比较,提出了一种利用电流型PWM整流器直、交流变换的升压特性实现的电子模拟功率负载系统。该系统除了具有电压型PWM整流器功率因数高、输出连续可调的优点外,还能满足输出电压变化的电源的试验要求,且具有可靠性高等优点。方案选择电压型PWM整流器与电流型PWM整流器的特点比较尽管电压型PWM整流器与电流型PWM整流器均能实现交流至直流及直流至交流的能量变换,但因其电路结构不同而各有其特点。从滤波结构上看,二者具有对偶特性,如表1所示。表1 电压型PWM整流器与电流型PWM整流器的特性采用电流型PWM整流器的原因对于输出电压恒定的被试电源,采用电压型PWM整流器能够很好的满足试验系统的要求,然而对于被试电源输出电压不恒定的情况,由于电压型PWM整流器的直流侧电压要大于等于其交流侧电压的峰值,从很好的满足试验要求的角度出发,很难实现对整流器的设计,如被试直流电源的电压变化范围为20%~100%的额定电压,则若按20%额定电压时设计交流额定电压的等级,则在100%的额定电压工作时会使得交流电流很大;若按100%额定电压设计,则在直流电压较低时逆变上网的电流会随直流电压的降低出现越来越严重的畸变现象。对于蓄电池的测试,因其在放电时输出电压会下降,所以与输出电压变化的电源具有同样的性质。由上述分析可以看出在这种情况下利用电流型PWM整流器实现电子模拟负载,可以方便的实现实验电能的回馈电网。基本原理电子负载模拟原理电子模拟负载应用系统原理如图1所示,被试电源从工业电网取得交流电能,其输出为直流,该直流作为模拟负载系统的输入。图1中的“负载模拟单元”即本文所述系统的核心部分,主要由电流型PWM整流器及滤波元件实现,用以取代传统的电阻能耗型负载。它的逆变能量经隔离变压器Tr后被实验系统循环使用,以此达到节约能源的目的。能量流动方向如图1所示。图1 电子模拟负载系统原理若设被试电源VDC从电网吸收的电能容量为100kW,效率为95%;负载模拟单元SL的效率为95%,变压器的效率为98%,则被试电源吸收功率:P1=100kW;被试电源输出:P2=100kW×95%=95kW;模拟负载输出:P3=95kW×95%=90.25kW。变压器输出:P4=90.25kW×98%=88.5kW。由此可见实验系统的总耗能为P0=P1-P4=11.5kW。即要完成100kW的功率试验,其能源功率消耗仅为11.5kW,这大大降低了实验系统对供电的要求。对于蓄电池放电实验,与上述系统不同的是其所释放出的电能完全被电网所吸收,以供其他用电用户使用,此时的工况相当于电力系统中发电机的并网运行。由上述分析可知,若要实现对阻性负载的模拟,同时将电能反馈电网,只要利用图2所示的PWM整流器进行逆变控制使其电能从直流侧向交流侧流动即可。电流型PWM整流器控制电流型PWM整流器原理图如图2所示。图2 PWM整流器原理图图2中VT1~VT6:主开关管IGBT;C:交流侧储能滤波电容;LA、LB、LC:PWM整流器至电网之间的滤波电感,为使得PWM整流器逆变到电网的电流谐波符合IEC1000-3-2标准而设置,它的引入可减少滤波储能电容的值;Ld:直流侧滤波电感,主要作用是存储电能变换过程中的无功能量;LEM:直流侧电压检测。图3为PWM整流器A相的等效电路,图中us,IP分别为电网电压矢量和电流型逆变器输出的A相电流基波的矢量,RS为线路电阻,Cs为储能滤波电容。图3 PWM整流器A相的等效电路逆变工况的基波矢量图如图4所示。图4 逆变工况的基波矢量图Cs为PWM整流器的交流侧储能滤波电容,它的取值大小至关重要。取值较大有利于电能转换及反馈电流的滤波,但成本增加且电容上的电流增加,电容上的电流增加则直接影响PWM整流器向电网逆变的功率,或同等功率下不得不增大PWM整流器主开关管的电流容量,从而使得整体成本增加;取值较小,电容上的电流减小价格降低,但反馈电流的谐波增加。因此对于Cs的取值应综合考虑电容上的电流、电流的谐波和制造成本。为使得Cs在合理的情况下PWM整流器的逆变输出电流满足IEC1000-3-2所规定的最大谐波电流值,在PWM整流器的交流输出端合理地设置滤波电感,如图2所示的LA、LB、LC可获得较为理想的效果,该电感的并入能较好的抑制流向电网的高次谐波电流,且该电感的数值较小并不能改变电路系统的特性。若设图2中的开关VTK导通时=1开关VTK关断时=0则根据电流型逆变器的工作特点必定有如下关系考虑到电流型PWM整流器直流侧具有相对较大的电感,因此有理由假定在一个开关周期内直流电流是保持恒定的,则图2所示的相关电流有如下关系上式中I为PWM整流器直流侧电流,考虑到输出波形的频率与逆变器开关频率相比要低得多,因而有理由用一个开关周期内的平均值dk替代开关函数,因此逆变器交流侧电流可表示为图2所示电路的电流型PWM整流器总计能产生六个空间矢量和三个零矢量,其表达式如下因此只要采取适当的控制策略就可以获得所要求的Ira、Irb、Irc。系统参数选择及实验结果每个负载模拟单元参数,直流电压:54~540V;直流电流:30~100A。参数选择系统主电路见图2,VT1~VT6:主开关管IGBT,电流额定为200A;LA、LB、LC:PWM整流器的滤波电感,4mH;L:直流侧滤波电感,5.3mH;C:交流侧储能滤波电容,5μF/1200V;LEM:直流侧电压检测,型号为:KV50A/P;逆变器调制频率:10kHz,直流侧电压:54~540V。实验结果图5的超前电压为电容上的电压,滞后者则为电网电压波形,从图2所示的原理图可以看出此时的工况为再生工况,且滤波电感LA、LB、LC起到滤波作用,进而可以看出尽管电容上的电压波形含有一定量的高频成分,但经滤波后的馈网电流的谐波已足够小了(见图6所示的电流波形)。图5 电网电压波形和电容上的电压波形图6 PWM整流器交流侧输出电流及电网电压波形PWM整流器交流侧电压及输出电流波形如图6所示。从图6所示的电网电压波形及PWM整流器输出电流波形可以看出二者是反相位的,即该控制方法使得交流侧的功率因数约为-1.0。利用波形分析仪对反馈电流进行的谐波分析得知,由电流型PWM整流器实现的电子模拟功率负载在额定功率运行时的总谐波小于1.2%,在50%功率运行时的总谐波含量小于1.3%,在10%功率运行时的总谐波含量小于1.6%,满足我国的有关谐波标准及国际IEC1000-3-2标准。实验证明该方法具有控制精确、电流动态效应快、DSP控制器计算量小、易于实现对逆变器的高频控制等优点。结论本文的原理分析及实验证明,采用电流型PWM整流器实现电子模拟功率负载,一方面为实现电子模拟功率负载提供了又一可选方案,另一方面,为输出电压变化的电源所需电子负载提供了更为有效的解决方法。该方案通过对电能的再生利用解决了利用电阻型负载进行实验时的能源浪费问题,改善了工作环境,节约了工作空间,实验的自动化程度也有很大的提高。本文的讨论是对输出电压变化的直流电源及蓄电池的出厂试验、特性实验,日常维护检测及可靠性试验而言的,对输出电压恒定的直流电源同样适用,只是它们的电流和电压的等级不同使得在设计上有所不同。

    时间:2018-08-29 关键词: 晶闸管 直流电源 电源技术解析 pwm整流器

  • 高频电镀用快恢复整流二极管的开发研制

    高频电镀用快恢复整流二极管的开发研制

    0 引言“对于直流电源,为了提高其工作性能,或是为了使直流电源达到小型轻量化的目的,常会遇到大电流高频整流问题。特别是对于低电压(臆24 V)的直流电源,这个问题就显得更加突出。”“其典型例子有:高频直流电镀电源等。”高频直流电镀电源由于其输出波形的可控性,不仅使电镀速度大大加快,而且使电镀层的质量大大提高,同时又使电源设备的体积大大减少,节电效果显著。1 课题的提出以前高频电镀电源所用的快恢复整流二极管都是肖特基二极管结构。这种快恢复整流二极管充分利用肖特基二极管多数载流子导电,因而正、反向恢复时间都短的优势,实现高频高效整流。功率二极管的正向恢复时间理解为:一个尚未导通的功率二极管在正向电流突然强行经过它时(叫做强制开通),改变到完全开通状态时所需的时间。在功率二极管完全恢复到开通状态前,正向恢复期间的正向压降要比完全开通状态时的压降高得多,这可能会产生电路电压尖峰。功率二极管的反向恢复时间理解为:一个正向导通的功率二极管在通过它的电压突然反向时(叫做强迫关断),恢复到阻断状态时所需的时间。功率二极管在反向恢复期间将产生大的反向电流和大的功率损耗,这是研制与应用功率二极管所不希望有的。具有长反向恢复时间的功率二极管类似于具有大寄生电容的功率二极管,具有长正向恢复时间的功率二极管类似于具有大寄生电感的功率二极管。本课题采用通常的PiN 结构制成的快恢复整流二极管实现高频整流及电镀应用。在保证正向、反向恢复时间都达到基本要求的前提下,使快恢复整流二极管既在反向恢复时间内不产生大的反向电流和大的功率损耗,又在正向恢复时间内不产生过大的电路电压尖峰(换言之,就是将寄生电容、电感做到最小)。进而发挥大电流特性,特别是浪涌电流高的优势,实现强电流高频整流及应用。2 肖特基二极管结构的优缺点金属和轻掺杂半导体之间的接触是整流接触,又称为肖特基(Schottky)势垒接触。利用这样的整流接触做成的器件,称之为肖特基二极管。肖特基二极管中电荷的运输是靠多数载流子来完成的。因此,与少子注入、过剩载流子的抽取与复合等相关联的现象,并不出现在开通和关断过程中。所以在高频状态下使用肖特基二极管具有优势。2.1 肖特基二极管的优点1)反向恢复时间和正向恢复时间都短;2)在低电流密度(JF<10 A/cm2)下,有比P+ -n-N+结构的整流二极管更低的通态电压。2.2 肖特基二极管的缺点1)在有限面积的接触处,击穿电压通常会小于100 V;3 基本技术方案本课题采用的技术方案是在电焊机专用大电流密度整流二极管的科研成果[4]的基础上,如单晶的选取、扩散方法和技术要求、多层金属化的欧姆接触、台面喷砂造型和聚酰亚胺钝化保护、管壳设计等大都是直接借用过来的,并且是经过改进的方案研制的,所以使整个研制工作走了捷径。命子p 有一个近似理想的分布;再用12 Mev 电子辐照,降低基区少子寿命到在硅片的两面蒸镀钛-镍-金、经台面喷砂造型,之后经去砂清洗腐蚀聚酰亚胺钝化保护、中间测试、装入陶瓷环充氮气冷压焊封装成型,再经全面测试电热参数、动态参数合格,最后制成高频电镀直流电源专用功率整流快恢复二极管。4 P+-i-N+功率二极管频率特性的改进大电流密度下的P+-i-N+功率二极管的通态特性大大优于肖特基二极管是不言而喻的。问题是如何提高其频率特性,使其接近肖特基二极管的水平。提高开通和关断过程的速度,也就是千方百计缩短由断到开,特别是由开到关的时间,即缩短正向恢复时间tfr和反向恢复时间trr。4.1 缩短正向恢复时间t(fr 改进开通特性)由整流二极管的国际标准知,正向恢复时间tfr 规定为:在紧接零电压或其他规定的反向电压条件施加规定的阶跃正向电流时,正向电压上升到第一个规定值瞬间和从其峰值VFRM 下降到接近正向电压最终稳定值的第二个规定值瞬间的时间间隔。如图2 所示。2)开通时的最高峰值电压主要由器件杂散(也称寄生)电感在电流上升率发生时的附加电压L·di/dt以及结电压(包括高低结的电压)构成。显然控制过大的杂散电感的产生是关键。这里采用有考究的平板式结构,管壳设计为无伞(伞也叫裙边)薄壳,这都是降低装配杂散电感,确保VFRM 值不高的必要措施。一般来讲,开通对高频应用的影响远不如关断时反向恢复时间以及反向恢复电荷的影响大。为此,提高整流二极管的高频应用能力,要将重点放在对关断特性的改进中。 4.2 降低反向恢复时间t(rr 改进关断特性)由整流二极管的国际标准知,反向恢复时间trr规定为:当从正向到反向转换时,从电流过零瞬间起,至反向电流由峰值IFM减少到规定低值瞬间(如图3 所示)的时间间隔。在研制过程中采取的措施是:1)通过采取磷硅玻璃、硼硅玻璃吸收和慢降温,先把少子寿命提高到目的是提高电子的少子寿命到,确保高频应用时压降不会过大,且正向开通时间tfr短。2)先低温扩铂再利用阴极面高浓度磷硅玻璃吸收,使少子寿命控制在并在基区有一个理想的分布,后采用电子辐照达到最终的关断要求的降低少子寿命的控制技术,既保证了器件长期应用的可靠性,又保证了反向恢复时间的要求,且又可以使器件软关断,即软因子FRRS 增大,反向恢复电荷Qr减小。软恢复的实质:在反向恢复时间不变的前提下,软因子FRRS增大,即反向恢复电流下降时间trRF增长,实质就是反向恢复电荷Qr 减小了(也就是最大反向恢复电流减小),这样就实现了关断时不产生过大的反向电流和过大的能量损耗的目的。3)采用截面电阻率均匀的硅单晶,使空间电荷区宽度均匀,结电容小也是关断时不产生过大的反向电流和过大的能量损耗的措施之一。4)有意将阳极区的表面浓度做得比阴极区的还要低,也是提高软因子,降低反向恢复电荷的措施之一。5 器件参数的测试测试研制生产的器件,以规格是直径48 mm/3 000 A/200 V的器件为例,记录实测结果如表1所列。测试结果和客户现场应用表明,所研制生产的产品符合高频电镀直流电源用快恢复功率二极管的要求。6 结语该P+-i-N+结构高电流密度高频整流二极管的成功开发,无疑为电源装置的设计制造提供了良好的选择途径,可应用在输出直流电压逸12 V的大电流高频整流装置中,其特点是提高高频整流性能、减小电源装置体积和大幅度提高输出电流。若采用外延片及阳极超薄发射区结构,将使应用频率更高,更有利于提高电镀电源性能,并进一步减小装置体积和降低能耗。随着国家对电力器件的日益重视,大力开展高性能二极管的研究开发将是我国功率半导体工作者的重要任务。

    时间:2018-08-27 关键词: 直流电源 电源技术解析 整流二极管 峰值电压

首页  上一页  1 2 3 4 5 6 7 8 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客