当前位置:首页 > 开关电源
  • 八个基本要点帮你顺利搞定开关电源PCB排版

    开关电源产生的电磁干扰,时常会影响到电子产品的正常工作,正确的开关电源PCB排版就变得非常重要。许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB布线存在着许多问题。现在电子产品更新换代速度极快,简直就是迅雷不及掩耳之势,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。根据经验总结了八点开关电源PCB排版的基本要点。下面就为大家简单总结一下这八个要点分别都是什么。要点1、旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容并联能改善电容的阻抗特性;要点2、电感的寄生并联电容应尽量小,电感引脚焊盘之间的距离越远越好;要点3、避免在地层上放置任何功率或信号走线;要点4、高频环路的面积应尽可能减小;要点5、过孔放置不应破坏高频电流在地层上的路径;要点6、系统板上一小同电路需要不同接地层,小同电路的接地层通过单点与电源接地层相连接;要点7、控制芯片至上端和下端场效应管的驱动电路环路要尽量短;要点8、开关电源功率电路和控制信号电路元器件需要连接到小同的接地层,这二个地层一般都是通过单点相连接。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 pcb排版

  • 脉冲序列对单激式开关电源变压器铁芯的磁化

    脉冲序列对单激式开关电源变压器铁芯的磁化

      为了简单起见,我们把单激式变压器开关电源等效成如图2-1所示电路,其中我们把直流输入电压通过控制开关通、断的作用,看成是一序列直流脉冲电压,即单极性脉冲电压,直接给开关变压器供电。这里我们特别把变压器称为开关变压器,以表示图2-1所示电路与一般电源变压器电路在工作原理方面还有区别的。  在一般的电源变压器电路中,当电源变压器两端的输入电压为0时,表示输入端是短路的,因为电源内阻可以看作为0;而在开关变压器电路中,当开关变压器两端的输入电压为0时,表示输入端是开路的,因为电源内阻可以看作为无限大。    在图2-1中,当一组序列号为1、2、3、…的直流脉冲电压分别加到开关变压器初级线圈a、b两端时,在开关变压器的初级线圈中就会有励磁电流流过,同时,在开关变压器的铁芯中就会产生磁场,在磁场强度为H的磁场作用下又会产生磁通密度为B的磁力线通量,简称磁通,用“Φ ”表示。  在变压器铁芯中,磁通密度B或磁通Φ 受磁场强度H的作用而发生变化的过程,称为磁化过程;因此,用来描述磁通密度B与磁场强度H之间对应变化的关系曲线,人们都把它称为磁化曲线。图2-2是单激式开关变压器铁芯被磁化时,磁通密度B与磁场强度H之间对应变化的关系曲线图。    顺便指出,在分析变压器铁芯的磁化过程中,经常使用磁通密度和磁感应强度这两个名称,这两个名称在本质上没区别,互相可以通用,不同场合使用不同名称,只是为了使用方便。  如果开关变压器的铁芯在这之前从来没有被任何磁场磁化过,并且开关变压器的伏秒容量足够大,那么,当第一个直流脉冲电压加到变压器初级线圈a、b两端时,在变压器初级线圈中将有励磁电流流过,并在变压器铁芯中产生磁场。  在磁场强度H的作用下,变压器铁芯中的磁感应强度B将会按图2-2中0-1磁化曲线上升;当第一个直流脉冲电压将要结束时,磁场强度达到第一个最大值Hm1,同时磁感应强度将会被磁场强度磁化到第一个最大值Bm1 ;由此产生一个磁感应强度增量ΔB,ΔB = Bm1- 0 。磁感应强度增加,表示流过变压器初级线圈中的励磁电流产生的磁场在对变压器铁芯进行充磁。  当序列脉冲电压加到开关变压器初级线圈a、b两端时,在变压器铁芯中会产生的磁场,这磁场完全是由流过变压器初级线圈的励磁电流产生的,流过变压器初级线圈的励磁电流为:    (2-8)式中, iμ为流过变压器初级线圈的励磁电流,E为加到变压器初级线圈两端的电压,L1为变压器初级线圈的电感量,t为时间, iμ(0)为初始电流,即t = 0时流过变压器初级线圈的励磁电流。  如果脉冲序列的占空系数(占空比)满足磁化电流在后一个脉冲进入前下降为零,即开关电源工作于电流临界连续或不连续状态。  当第一个直流脉冲结束以后,由于开关变压器初级线圈开路,虽然流过变压器初级线圈中的励磁电流下降到零,但磁场强度H不会马上下降到零;此时,变压器的初、次级线圈会同时产生反电动势,由于反电动势的作用,在变压器的初、次级线圈回路中都会有电流流过,这种回路电流属于感应电流,或称感生电流。  当第一个直流脉冲结束时,如果开关变压器初级线圈不开路,反电动势会对输入电压进行反充电;如果开关变压器初级线圈是开路的,反电动势会对初级线圈中的分布电容进行充放电,从而会在初级线圈内部产生高频振荡。  由反电动势产生的感应电流会在变压器铁芯中产生反向磁场,使变压器铁芯退磁,磁场强度H开始由第一最大值Hm1逐步下降到0;但变压器铁芯中的磁通密度B并不是按充磁时的0-1磁化曲线原路返回,跟随磁场强度下降到零,而是按另一条新的磁化曲线1-2返回到2点;即:第一个剩余磁通密度Br1处。因此,人们都习惯地把磁通密度位于2点的值,称为剩余磁通密度,或简称“剩磁”。变压器铁芯有剩磁说明变压器铁芯有记忆特性,这是铁磁材料的基本特性。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 脉冲序列 单激式

  • 开关电源常见故障维修技巧

      电气故障检修中电源故障占电子设备故障的大多数。故熟悉开关电源常见故障和维修技巧,有利于缩短电子设备故障维修时间,提高个人设备维护技能。  一、常见故障  ⑴ 保险丝熔断:  一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。需要特别注意的是:切不可在查出某元件损坏时,更换后直接开机,这样很有可能由于其它高压元件仍有故障又将更换的元件损坏,一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断的故障。  ⑵ 无直流电压输出或电压输出不稳定  如果保险丝是完好的,在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。在用万用表测量次级元件,排除了高频整流二极管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。高频滤波电路主要由整流二极管及低压滤波电容组成直流电压输出,其中整流二极管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。用万用表静态测量对应元件即可检查出其损坏的元件。  ⑶ 电源负载能力差  电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏等。  二、维修技巧  开关电源的维修可分为两步进行:  ⑴ 断电情况下,“看、闻、问、量”  ① 看:打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应重点检查此处元件及相关电路元件。  ② 闻:闻一下电源内部是否有糊味,检查是否有烧焦的元器件。  ③ 问:问一下电源损坏的经过,是否对电源进行违规操作。  ④ 量:没通电前,用万用表量一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心。用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源内部可能存在短路。电容器应能充放电。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。  ⑵ 加电检测  通电后观察电源是否有烧保险及个别元件冒烟等现象,若有要及时切断供电进行检修。  测量高压滤波电容两端有无300伏输出,若无应重点查整流二极管、滤波电容等。  测量高频变压器次级线圈有无输出,若无应重点查开关管是否损坏,是否起振,保护电路是否动作等,若有则应重点检查各输出侧的整流二极管、滤波电容、三通稳压管等。  如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源处于保护状态下,应重点检查产生保护的原因。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 维修技巧

  • 如何抑制开关电源的干扰?

    如何抑制开关电源的干扰?

      引言  开关电源作为电子设备的供电装置,具有体积小、重量轻、效率高等优点,在数字电路中得到了广泛的应用,然而由于工作在高频开关状态,属于强干扰源,其本身产生的干扰直接危害着电子设备的正常工作。因此,抑制开关电源本身的电磁噪声,同时提高其对电磁干扰的抗扰性,以保证电子设备能够长期安全可靠地工作,是开发和设计开关电源的一个重要课题。  1 开关电源干扰的产生  开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。两者都涉及到人为因素和自然因素。  1.1 开关电源内部干扰  开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。  1.1.1基本整流器  基本整流器的整流过程是产生EMI最常见的原因。这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。  1.1.2功率变换电路  功率变换电路是开关稳压电源的核心,它产带较宽且谐波比较丰富。产生这种脉冲干扰的主要元器件为  1)开关管开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。  2)高频变压器 开关电源中的变压器,用作隔离和变压,但由于漏感的原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。  3)整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十MHz。  4)电容、电感器和导线开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。  1.2 开关电源外部干扰  开关电源外部干扰可以以“共模”或“差模”方式存在。干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,电源干扰的类型见表1。  在表1中的几种干扰中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。  2 开关电源干扰耦合途径  开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式。  2.1 传导耦合  传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。在开关电源中,这3种耦合方式同时存在,互相联系。  2.1.1电路性耦合  电路性耦合是最常见、最简单的传导耦合方式。其又有以下几种:  1)直接传导耦合导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。  2)共阻抗耦合由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合。形成共阻抗耦合骚扰的有电源输出阻抗、接地线的公共阻抗等。  2 1.2电容性耦合  电容性耦合也称为电耦合,由于两个电路之生的尖峰电压是一种有较大幅度的窄脉冲,其频间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。  2.1.3 电感性耦合  电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。  2.2 辐射耦合  通过辐射途径造成的骚扰耦合称为辐射耦合。辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器。通常存在4种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合。

    时间:2019-03-07 关键词: 开关电源 电源技术解析

  • 开关电源的布局原则

      开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。  当设计高频开关电源时,布局非常重要。良好的布局可以解决这类电源的许多问题。因布局而出现的问题,通常在大电流时显现出来,并且在输入和输出电压之间的压差较大时更加明显。一些主要的问题是在大的输出电流和/或大的输入/输出电压差时调节能力的下降,在输出和开头波形上的额外噪声,以及不稳定性。应用下面的几个简单原则就可以把这类问题最小化。  电感器  开关电源尽量使用低EMI(Electro Magnetic Interference)的带铁氧体闭合磁芯的电感器。比如圆形的或封闭的E型磁芯。如果开口磁芯(open cores)具有较低的EMI特性,并且离低功率导线和元件较远,也可以使用。如果使用开口磁芯,使磁芯的两极与PCB板垂直也是一个好主意。棒状磁芯(stick cores)通常用来消除大部分不需要的噪声。  反馈  尽量使反馈回路远离电感器和噪声源。还要尽可能使反馈线为直线,并且要粗一点。有时需要在这两种方案之间折衷一下,但使反馈线远离电感器的EMI和其它噪声源是两者当中更关键的一条。在PCB上使反馈线位于与电感器相对的一侧,并且中间用接地层分开。  滤波电容器  当使用小容量瓷质输入滤波电容器时,它应该尽可能靠近IC的VIN引脚。这将消除尽可能多的线路电感影响,给内部IC线路一个更干净的电压源。开关电源一些设计需要使用前馈电容器从输出端连接到反馈引脚,通常是为了稳定性的原因。在这种情况下,它的位置也应该尽量靠近IC。使用表贴电容还会减少引线长度,从而减少噪声耦合进因通孔元件而造成的有效天线(effective antenna)。  补偿  如果为了稳定性,需要加入外部补偿元件,它们也应该尽量靠近IC。这里也建议使用表贴元件,原因同对滤波电容的讨论。这些元件也不应该离电感器太近。  走线和接地层  使所有的电源(大电流)走线尽可能短、直、粗。在一块标准PCB板上,最好使走线的每安绝对最小宽度为15mil(0.381mm)。电感器、输出电容器和输出二极管应该尽可能靠在一起。这样可以帮助减少在大开关电流流过它们时,由开关电源走线引起的EMI。这也会减少引线电感和电阻,从而减少噪声尖峰、鸣震(ringing)和阻性损耗,这些都会产生电压误差。IC的接地、输入电容器、输出电容器和输出二极管(如果有的话)应该一起直接连接到一个接地面。最好在PCB的两面都设置接地面。这样会减少接地环路误差和吸收更多的由电感器产生的EMI,从而减少了噪声。对于多于两层的多层板,可以用接地面分开电源面(电源走线和元件所在的区域)和信号面(反馈和补偿元件所在的区域)以提高性能。在多层板上,需要使用通孔把走线和不同的面连接起来。如果走线需要从一个面传输一个较大的电流到另一个面,每200mA电流使用一个标准通孔,是一个良好的习惯。  排列元件,使得开头电流环同方向旋转。根据开头调节器的运行方式,有两种功率状态。一个状态是当开头闭合时,另一个状态是当开头断开时。在每种状态期间,将由当前导通的功率器件产生一个电流环。排列功率器件,以使每种状态期间电流环的导通方向相同。这会防止两个半环之间的走线产生磁场反转,并可减少EMI的放射。  散热  当使用表贴功率IC或外部功率开关时,PCB通常可以用作散热器。这就是用PCB上的敷铜面来帮助器件散热。参照特定器件手册中有关使用PCB散热的信息。这通常可以省去开关电源外加的散热装置。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 布局原则

  • 开关电源IGBT的可靠性能解析

      一、IGBT的简单介绍  绝缘栅双极型晶体管(简称“IGBT”)是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。  若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS 截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极-发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。  二、IGBT的可靠性要素  IGBT的安全可靠与否主要由以下因素决定:  1.IGBT栅极与发射极之间的电压;  2.IGBT集电极与发射极之间的电压;  3.流过IGBT集电极-发射极的电流;  4.IGBT的结温。  如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。  三、IGBT的检测方法  1.判断极性  首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G )其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。  2.判断好坏  将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极(E),此时万用表的指针在零位。用手指同时触及一下栅极(G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。  总之,任何指针式万用表皆可用于检测IGBT.注意判断IGBT 好坏时,一定要将万用 表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。  四、IGBT的使用注意事项  由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V.因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:  1.在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸;在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。  2.在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。  3.在栅极-发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。  总之,在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KΩ左右的电阻。在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。

    时间:2019-03-07 关键词: 开关电源 igbt 电源技术解析

  • 新型开关电源技术简介

      开关电源一直是电子行业里非常热门的技术,虽然它并的性能并不能对我们日常生活的改变带来天翻地覆的变化,而它的发展趋势又是电子产品设计师和商家所关注的问题之一,新的产品必然会带动更多的商家订单和客户消费。根据市场开关电源的现状和发展,总结出五大设计性能关注焦点,下面一一为大家解析。  关注点之一:高频磁与同步整流技术的革新  在电源系统中我们会应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。而我们在性能上对高频磁元件所用磁性材料有一定的要求,其中损耗小,散热性能好是基本的要求,只有达到这样的标准才能做到产品的优化,磁性能才会优越。适用于兆赫级频率的磁性材料是用户的一大关注点,纳米结晶软磁材料也已得到开发应用。  然后在拥有了高频化技术之后,提高开关电源的效率是技术的另一难题,这就要求我们技术设计人员必须开发和应用软开关技术。而这种软开关技术的研究已经成为行业的多年来的科研热点,得到越来越多的设计者们的关注。  我们看过这样的技术,如同步整流SR技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD)。这个设计可降低管压降,从而提高电路效率。这就是我们在对于低电压、大电流输出的软开关变换器,我们想方设法降低开关的通态损耗,进一步提高其效率的措施。  关注点之二:开关电源的功率密度的改进  提高开关电源的功率密度,使之小型化、轻量化,是设计者的关注之一。电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要,设计者们将通过三种方案来做到降低开关电源的功率密度。  第一种方案是实现高频化。为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。  第二种方案是采用新型电容器。减小电力电子设备的体积和重量,必须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻ESR小、体积小,做到新型电容器的体积缩小作用。  第三种方案是应用压电变压器的改进。应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,进行应用压电变压器的改进。  关注点之三:功率半导体器件性能  早在上世纪末,Infineon公司推出了冷mos管,它采用“超级结”(Super-Junction)结构,又称超结功率MOSFET。工作电压在600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体电子器件。  就在这种很有前途的高频功率半导体电子器件IGBT刚出现时,电压、电流额定值只有600V、25A。很长一段时间内,耐压水平限于1200V~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关),大大提高了应用性能。  我们看到的IGBT技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。随着工艺和结构形式的不同,IGBT在20年历史发展进程中,分别是穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。  碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体电子元器件。由此我们不难看出碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料,它的出现将大大改进我们原有的产品设计性能。  关注点之四:分布电源结构  在说到分布电源结构之前我们先说一下分布电源系统, 现在分布电源系统有两种结构类型有两级结构和三级结构两种类型。分布电源系统适合于用作超高速集成电路组成的大型工作站(如图像处理站)、大型数字电子交换系统等的电源,它有着可实现DC/DC变换器组件模块化、容易实现N+1功率冗余、易于扩增负载容量、可降低48V母线上的电流和电压降、容易做到热分布均匀、便于散热设计、瞬态响应好,可在线更换失效模块等优点。  关注点之五:PFC变换器  由于AC/DC变换电路的输入端有整流元件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6~0.65。采用PFC(功率因数校正)变换器,网侧功率因数可提高到0.95~0.99,输入电流THD小于10%。既治理了电网的谐波污染,又提高了电源的整体效率。这一技术称为有源功率因数校正APFC单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。  一般高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。  如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到0.8以上,并使输出直流电压可调,调整后的直流电压就促进了PFC变换器的应用性能,最终实现总体的效率提高,成本降低。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 技术简介

  • UC3842  开关电源设计的好帮手

    UC3842 开关电源设计的好帮手

    基于UC3842组成的DC-DC转换器,总框架采用现成的电路,但实际应用中由于输入电压和工作频率不同,重新设计了电路,参数UC3842是美国Unitrode公司生产的一种高性能单端输出电流控制脉宽调制器芯片。UC3842为8脚双列直插式封装,其内部原理框图如图1所示。主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。端1为COMP端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。2.1启动过程首先由电源通过启动电阻R1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。根据同名端标识情况,此时变压器各路副边没有能量输出。当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。同时反馈线圈向UC3842供电。UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V,如图3所示。在开启之前,UC3842消耗的电流在1mA以内。电源电压接通之后,当7端电压升至16V时UC3842开始工作,启动正常工作后,它的消耗电流约为15mA。因为UC3842的启动电流在1mA以内,设计时参照这些参数选取R1,所以在R1上的功耗很小。2.2稳压过程从图2中可知,当场效应管导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在场效应管导通结束时,Np绕组中电流达到最大值Ipmax,根据法拉第电磁感应定律:式中:E——整流电压;Lp——变压器初级绕组电感;Ton——场效应管导通时间。在场效应管关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为:式中:n——变压器变比,n=Np/Ns,Np、Ns为变压器初、次级绕组匝数。高频变压器在场效应管导通期间初级绕组储存的能量与场效应管关闭期间次级绕组释放的能量相等:式中:Ls——变压器次级绕组电感;Uo——输出电压;Toff——场效应管关闭时间。上式说明,输出电压Uo与Ton成正比,与匝比n及Toff成反比。比如,由于电源电压变化或负载变化而引起输出电压降低时,反馈线圈的输出电压则会变低,从而使2端电压变低,则脉宽调制器会相应的增大输出PWM波形的占空比,使大功率晶体管导通的时间变长;反之,当电源电压变化或负载变化而引起输出电压升高时,则脉宽调制器会相应的减小PWM输出脉冲波形的占空比,使大功率晶体管导通的时间变短,从而维持输出电压为一恒定值。UC3842为固定工作频率脉宽调制方式,输出电压或负载变化时仅调整占空比,控制场效应管的导通时间。反馈电压输入2脚,此脚电压与内部2.5V基准进行比较,产生控制电压,从而控制脉冲宽度;输出脉冲的频率由4脚外接定时电阻Rt及定时电容Ct决定:Rt的单位是kΩ,Ct是μF。3脚为电感、电流传感器端,取样超过1V时,缩小导通脉宽使电源处在间隙工作状态;6脚为输出端,内部图腾柱式,上升、下降时间仅有50ns,驱动能力为±1A;7脚为供电输入,起振后工作电压在10~13V之间,若低于10V电路停止工作,功耗为15mW;8脚为内部基准5V(50mA)。

    时间:2019-03-07 关键词: 开关电源 电源技术解析 uc3842

  • 开关电源变压器涡流损耗分析

    开关电源变压器涡流损耗分析

     开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。  单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式开关电源变压器涡流损耗的方法,只需稍微变换,就可以用于对双激式开关电源变压器的涡流损耗进行计算。例如,把双激式开关电源变压器的双极性输入电压,分别看成是两次极性不同的单极性输入电压,这样就可以实现对于双激式开关电源变压器涡流损耗的计算。因此,下面仅对单激式开关电源变压器的涡流损耗计算进行详细分析。  当有一个直流脉冲电压加到变压器初级线圈的两端时,在变压器初级线圈中就就有励磁电流通过,并在变压器铁芯中产生磁场强度H和磁通密度B,两者由下式决定:  B =ΔB*t/τ +B(0) (2-44)  H =ΔH*t/ΔH +H(0) (2-45)  上式中ΔB和ΔH分别为磁通密度增量和磁场强度增量,τ为直流脉冲宽度,B(0)和H(0)分别为t = 0时的磁通密度B和磁场强度H。  传统的变压器铁芯为了降低涡流损耗,一般都把变压器铁芯设计成由许多薄铁片,简称为铁芯片,互相重迭在一起组成,并且铁芯片之间互相绝缘。图2-18表示变压器铁芯或变压器铁芯中的一铁芯片。我们可以把这些铁芯片看成是由非常多的“线圈”(如图中虚线所示)紧密结合在一起组成;当交变磁力线从这些“线圈”中垂直穿过时,在这些“线圈”中就会产生感应电动势和感应电流,由于这些“线圈”存在电阻,因此这些“线圈”要损耗电磁能量。    在直流脉冲作用期间,涡流的机理与正激电压输出的机理是基本相同的。涡流产生磁场的方向与励磁电流产生磁场的方向正好相反,在铁芯片的中心处去磁力最强,在边缘去磁力为零。因此,在铁芯片中磁通密度分布是不均匀的,即最外层磁场强度最大,中心处最小。如果涡流退磁作用很强,则磁通密度的最大值可能远远超过其平均值,该数值由已知脉冲的幅度和宽度来决定。  沿铁芯片截面的磁场分布,可以用麦克斯韦的方程式来求得;麦克斯韦的微分方程式为:      上式中 μa为变压器铁芯的平均导磁率,ρc为铁芯的电阻率,负号表示涡流产生的磁场方向与励磁电流产生的磁场方向相反。rot E和rot Hx分别表示电场和磁场的旋度,即涡旋电场和涡旋磁场的强度。Hx、Hy、Hz分别磁场强度H的三个分量;Bx、By、Bz分别磁感应强度B的三个分量;Ex、Ey、Ez分别电场强度H的三个分量。  由于单激式开关电源变压器铁芯的磁滞回线面积很小,其磁化曲线基本上可以看成一根直线,导磁率μ也可以看成是一个常数;因此,这里使用平均导磁率 来取代意义广泛的导磁率 。  从图2-18可以看出,磁场强度由H = Hz:和Hx = Hy = 0组成;对于电场强度,其指向平行于Y轴为E = Ey,Ex = Ez = 0。因此,上面两式又可以改写为:    对(2-53)式进行微分,然后代入(2-52)式,即可求得磁场强度的一维分布方程为:    由于加到变压器初级线圈两端的电压是一个直流脉冲方波,在稳定状态条件下,励磁电流产生的磁场强度或磁通密度的增长应与时间成线性关系,即:    当x = 0时,正好位于铁芯片的中心,此处的磁场强度最小,即此点的导数值等于0,由此求得积分常数c1= 0。  对(2-57)再进行一次积分得:    由于在变压器铁芯片内,截面磁场强度的平均值Ha,在任一时间内都必须等于电磁感应所要求的值,即满足(2-45)式的要求,因此对应图2-18对(2-58)式求平均值得:    把(2-60)代入(2-58)式,可求得在稳定状态条件下铁芯片中的磁场强度为:    图2-19-a和图2-19-b分别是由(2-61)式给出的,铁芯片中磁场强度按水平方向分布的函数H(x)和按时间分布的函数H(t)曲线图。  从图2-19-a中可以看出,由于涡流产生反磁化作用的缘故,在铁芯或铁芯片中心磁场强度最低,而边缘磁场强度最高。  在图2-19-b中,随着时间线性增长部分是变压器初级线圈励磁电流产生的磁场;Hb是为了补偿涡流产生的去磁场,而由变压器初级线圈另外提供电流所产生的磁场。  从图2-19-b可以看出,涡流损耗对变压器铁芯中磁场强度(平均值)的影响,与变压器正激输出时,次级线圈中电流产生的磁场对变压器铁芯磁场的影响,基本是一样的。值得注意的是,如果用同样方法对y轴方向进行分析,也可以得到同样的结果。  从图2-19-a可以看出,当x =δ/2 时,铁芯片表面磁场强度的最大值为:  

    时间:2019-03-07 关键词: 开关电源 电源技术解析 变压器

  • 开关电源结构分析

    开关电源结构分析

    开关电源的结构 常用开关电源,主要是为电子设备提供直流电源供电。电子设备所需要的直流电压,范围一般都在几伏到十几伏,而交流市电电源供给的电压为220V(110V),频率为50Hz(60Hz)。开关电源的作用就是把一个高电压等级的工频交流电变换成一个低电压等级的直流电。开关电源图结构工频交流电进入开关电源后被直接整流,省去了体积大、重量大的工频整流变压器。整流器输出为电压很高的直流电,整流后的电压经电容滤波,电压的平均值为300V~310V。高电压等级的直流电送往逆变器的输入端,经逆变器变换,变为高电压、高频交流电。目前开关电源逆变器的变换工作频率在几十到几百KHz 范围。逆变器输出的交流电能,接高频降压变压器的原边,由于经逆变器产生的高频交流电的频率比工频高得多,所以高频变压器的体积要比同容量的工频变压器小得多,从根本上减小了整个电源的体积和重量。逆变器产生的高频交流电经高频变压器降压后,在经过整流、稳压等环节,变换出符合负载要求的低压直流电能,供给负载。开关电源原理图如何选用开关电源?工频整流电路一般为不可控整流电路,根据电源容量的大小,可以是单相整流,一般选用单相桥式结构,大容量的开关电源可用三相交流电源。开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达0.5% ~ 1%。开关电源模块作为一种电力电子集成器件,在选用中应注意以下几点.1. 输出电流的选择因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应准确测量或计算用电设备的最大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为:开关电源输出计算公式2. 接地开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,因此开关电源一般应带有EMC电磁兼容滤波器。3. 保护电路开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。开关电源-谐波危害(1) 增加旋转电机的损耗   电动机在正常持续运行条件下,电网中负序电压不超过额定电压的2%,如果电网中谐波电压折算成等值基波负序电压大于这个数值,则附加功耗明显增加。对旋转电机产生附加功率损耗和发热,并可能引起振动。(2) 加速金属化膜电容器老化在电网中金属化膜电容器被大量用于无功补偿或滤波器,而在谐波的长期作用下,金属化膜电容器会加速老化。对无功补偿电容器组引起谐振或谐波电流的放大,导致电容器因过负荷或过电压而损坏;对电力电缆也会造成过负荷或过电压击穿。(3) 污染公用电网公用电网的谐波特别严重时,不但使接入该电网的设备(电视机、计算机等)无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送,增加电网的损耗。当发生谐振或放大时损耗可达到相当大的程度。(4)对继电保护、自动控制装置、信息机造成误动作和干扰,影响可靠性。如果继电保护装置是按基波负序量整定其整定值大小,此时,若谐波干扰叠加到极低的整定值上,则可能会引起负序保护装置的误动作,影响电力系统安全。(5) 影响变压器工作   谐波电流,特别是3次(及其倍数)谐波侵入三角形连接的变压器,会在其绕组中形成环流,使绕组发热。对Y形连接中性线接地系统中,侵入变压器的中性线的3次谐波电流会使中性线发热。谐波增加电度表本身的误差,用户既吸收基波无功又吸收谐波功率。谐波不仅表现为电流谐波,而且由于谐波电流对电网冲击使供电电压含有谐波,这就使得相同子网都会受到谐波的影响。(6) 增加输电线路功耗   如果电网中含有高次谐波电流,那么,高次谐波电流会使输电线路功耗增加。 如果输电线是电缆线路,与架空线路相比,电缆线路对地电容要大10 ~ 20倍,而感抗仅为其1/3 ~ 1/2,所以很容易形成谐波谐振,造成绝缘击穿。

    时间:2019-03-06 关键词: 结构分析 开关电源 电源技术解析

  • 基于TinySwitch II芯片开关电源的应用设计

    基于TinySwitch II芯片开关电源的应用设计

    TinySwitch II系列产品可广泛用于23W以下小功率、低成本的高效开关电源。例如,IC卡付费电度表中的小型化开关电源模块,手机电池恒压/恒流充电器,电源适配器(Powersupplyadapter),微机、彩电、激光打印机、录像机、摄录像机等高档家用电器中的待机电源(Standbypowersupply),也适用于ISDN及DSL网络终端设备。  使用TinySwitch II便于实现开关电源的优化设计。由于其开关频率提高到132kHz,因此高频变压器允许采用EE13或EF12.6小型化磁芯,并达到很高的电源效率。TinySwitch II具有频率抖动特性,仅用一只电感(在输出功率小于3W或可接受的较低效率时,还可用两个小电阻)和两只电容,即可进行EMI滤波。即使在短路条件下,也不需要使用大功率整流管。做具有恒压/恒流特性的充电器时,TinySwitch II能直接从输入高压中获取能量,不需要反馈绕组,并且即使输出电压降到零时仍能输出电流,因此可大大简化充电器的电路设计。对于需要欠压保护的应用领域(如PC待机电源),也能节省元件数量。  1:TinySwitch II的典型应用  1:1 -- 2.5W恒流/恒压输出式手机电池充电器  由TNY264(IC1)构成的2.5W(5V、0.5A)、交流宽范围输入的手机电池充电器电路,如图1所示。RF为熔断电阻器。85V~265V交流电经过VD1~VD4桥式整流,再通过由电感L1与C1、C2构成的π型滤波器,获得直流高压UI。R1为L1的阻尼电阻。利用TNY264的频率抖动特性,允许使用简单的滤波器和低价格的安全电容C8(Y电容)即可满足抑制初、次级之间传导式电磁干扰(EMI)的国际标准。即使发生输出端容性负载接地的最不利情况下,通过给高频变压器增加屏蔽层,仍能有效抑制EMI。由二极管VD6、电容C3和电阻R2构成的钳位保护电路,能将功率MOSFET关断时加在漏极上的尖峰电压限制在安全范围以内。当输出电流IO低于500mA时,电压控制环工作,电流控制环则因晶体管VT截止而不起作用。此时,输出电压UO由光耦合器IC2(LTV817)中LED的正向压降(UF≈1V)和稳压管VDZ的稳压值(UZ=3.9V)来共同设定,即UO=UF+UZ≈5V。电阻R8给稳压管提供偏置电流,使VDZ的稳定电流IZ接近于典型值。次级电压经VD5、C5、L2和C6整流滤波后,获得+5V输出电压。  图1: 2.5W恒压/恒流式手机电池充电器电路图  TinySwitch II的开关频率较高,在输出整流管VD5关断后的反向恢复过程中,会产生开关噪声,容易损坏整流管。虽然在VD5两端并上由阻容元件串联而成的RC吸收电路,能对开关噪声起到一定的抑制作用,但效果仍不理想,况且在电阻上还会造成功率损耗。解决的办法是在次级整流滤波器上串联一只磁珠。  磁珠(Magneticbead)是近年来问世的一种超小型的非晶合金磁性材料,它与铁氧体属两种材料。市售的磁珠外形与塑封二极管相仿,外形呈管状,但改用磁性材料封装,内穿一根导线而制成的小电感。常见磁珠的外形尺寸有Φ2.5×3(mm)、Φ2.5×8(mm)、Φ3×5(mm)等多种规格。供单片开关电源使用的磁珠,电感量一般为几至几十μH。磁珠的直流电阻非常小,一般为0.005Ω~0.01Ω。通常噪声滤波器只能吸收已发生了的噪声,属于被动抑制型;磁珠的作用则不同,它能抑制开关噪声的产生,因此属于主动抑制型,这是二者的根本区别。磁珠可广泛用于高频开关电源、录像机、电子测量仪器、以及各种对噪声要求非常严格的电路中。图1中的滤波电感L2,就选用3.3μH的磁珠,可滤除VD5在反向恢复过程中产生的开关噪声。  由晶体管VT、电流检测电阻R4和光耦合器IC2组成电流控制环。当输出电流IO接近于500mA时,由于R4上的压降升高,使晶体管VT的发射极电压 UBE也随之升高,VT进入放大区,此时电流控制环开始起作用,输出呈恒流特性。即使输出端发生短路故障,使得IO↑,UO→0V,由于电阻R6和R4上的总压降约为1.2V,仍能维持VT和光耦合器中LED的正常工作。R3为基极限流电阻。  1.2 -- 15W的PC机待机电源电路字串6 一种输出功率为15W的PC机待机电源电路如图2所示。该电源可提供两路输出:主输出为+5V、3A;辅助输出则为+12V、20mA。总输出功率为 15.24W,电源效率高于78%。电路中采用两片集成电路:TNY267P型微型单片开关电源(IC1),SFH615 2型线性光耦合器(IC2)。直流输入电压为140V~375V,这对应于交流输入电压为230V±15%或者110/115V倍压输入的情况。利用TNY267P的欠压检测、自动重启动和高频开关特性,允许使用体积较小、价格较低的EE22型高频变压器磁芯。TNY267P芯片采用的是DIP 8封装形式,它能滤除因输出滤波电容缓慢放电而引起自动重启动时,在输出电压波形上形成的毛刺。当输入电压低于欠压值时,TNY267P就自动关断,起到保护作用;仅当输入电压高于欠压阈值时才工作。R2、R3为欠压阈值设定电阻。二者的总阻值选4MΩ时,欠压阈值设定为直流200V,整流后的直流高压UI必须高于200V时,才能开启电源。而一旦开启电源,就将持续工作,直到UI降至140V才关机。这种滞后式关机的特性,可为待机电源提供所需的保持(Holdup)时间。  图2: 15W的PC机待机电源电路图  初级一侧的辅助绕组经VD2、C2整流滤波后,获得+12V输出电压,并通过R4给TNY267P供电。正常工作时TNY267P内部漏极驱动的电流源也停止对外部旁路电容充电,以减少其间的静态损耗。选R4=10kΩ时,可为旁路端提供640μA的电流,这略高于TNY267P的损耗电流,超出部分将被芯片内部的稳压管钳位在6.3V的安全电压上。 字串6次级输出经VD3、C6和C7进行整流滤波。L与C8构成后级滤波器,主要用来滤除开关噪声。当输出端短路时,自动重启动电路就限制了输出电流的增大,并且滤除了对VD3的过冲电压。由光耦合器IC2(SFH615 2)、稳压管VDZ对5V输出进行检测,R5给稳压管提供偏置电流。  2:电路设计要点  2.1 -- 使用注意事项  (1)直流输入电压UI的最小值UImin可按90V来设计。输入宽范围电压(85V~265V)时,输入级滤波电容C1的容量可按3μF/W的比例系数来选取;例如当输出功率PO=10W时,C1=30μF。对于交流230V±15%固定电压输入的情况,比例系数可取1μF/W。  (2)为了降低损耗,提高电源效率,次级整流管宜采用肖特基势垒二极管(SchottkyBarrierDiode,英文缩写为SBD),简称肖特基二极管。这种管子具有正向压降低(UF≈0.4V)、功率损耗小、反向恢复时间短(trr可小到几ns)等优点,适合用做低压、大电流整流或续流。  (3)选择输出功率较大的TinySwitch II芯片,有 助于提高电源效率。例如在图2所示的电路中,选择TNY267时电源效率的下限值为78%;若采用TNY266、TNY264,就依次降为76%、74%。  (4)在特定的应用中,TinySwitch II的最大输出功率随热环境(包括环境温度,散热条件,通风状况以及电源采用密封式还是敞开式等因素)、高频变压器磁芯的尺寸、工作方式的设计(连续模式或不连续模式)、所需功率、输入电压的最小值、输入级滤波电容的容量、输出整流管的正向压降等条件而变化,可能与TinySwitch II系列第二代微型开关电源的原理一文中的表1中所列的典型值不同[见《电源技术应用》2001(11)]。  (5)TinySwitch II能滤除高频变压器产生的音频 噪声。允许采用普通结构的浸漆变压器,磁芯之间也可以不用胶粘接。当开关电源随负载的减轻而产生音频干扰时,TinySwitch II就通过不连续地减小极限电流值,以滤除音频噪声。  (6)图1中的LTV817型线性光耦合器,可用 PC817或PC817A来代替。它们的技术参数基本相同,电流传输比CTR=80%~160%,反向击穿电压U(BR)CEO≥35V。  (7)在图2所示电路中,待机电源若选择TNY266P芯片,输出功率就降为10W。此时可选EE16型高频变压器磁芯,并且还可以去掉滤波电容C7。  2.2 -- 印制板设计要点  TinySwitch II芯片的印制板元器件布置图,如图3所示,这里未使用欠压保护电阻。设计印制板时必须注意以下事项:  图3: TinySwitch II的印制板元件布置图  (1)TinySwitch II下面的敷铜板不仅作为源极接 地点,还起到散热作用。图3中阴影区域面积应足够大,才能保证TinySwitch II和次级整流管散热良好,使芯片的结温低于100℃。  (2)旁路端电容CBP和输入滤波电容C1必须采 用单点接地法,接至源极端。连接C1、高频变压器和TinySwitch II的初级回路应尽量短捷。  (3)初级钳位电路用于限制关断时漏极上的峰 值电压。可用R、C、VD型钳位电路来实现,亦可用200V稳压管或者瞬态电压抑制器(TVS)对漏极电压进行钳位。在任何情况下,都要使钳位元器件到高频变压器和TinySwitch II的距离为最短。  (4)若使用欠压检测电阻,应使电阻尽可能靠近 EN/UV端,以减少感应噪声。还需要考虑欠压检测电阻R2和R3的耐压值。选择(1/4)W的电阻时,一般可承受200V电压(指连续加压,下同);对(1/2)W的电阻,耐压值则为400V。 字串3  (5)安全电容(Y电容)应直接安装在初级滤波电容的正极与次级的公共地(返回端)之间,最大限度地抑制电磁干扰和共模浪涌电压。(6)光耦合器到T

    时间:2019-03-06 关键词: 芯片 ii 开关电源 电源技术解析 tinyswitch

  • 开关电源的优缺点

      开关电源的优点:  1、功耗小,效率高。在开关电源电路中,晶体管V在激励信号的激励下,它交替地工作在导通-截止和截止-导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz.这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%.  2、体积小,重量轻。从开关电源的原理框图可以清楚地看到这里没有采用笨重的工频变压器。由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。由于这两方面原因,所以开关电源的体积小,重量轻。  3、稳压范围宽。从开关电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿。这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。所以开关电源的稳压范围很宽,稳压效果很好。此外,改变占空比的方法有脉宽调制型和频率调制型两种。开关电源不仅具有稳压范围宽的优点,而且实现稳压的方法也较多,设计人员可以根据实际应用的要求,灵活地选用各种类型的开关电源。  滤波的效率大为提高,使滤波电容的容量和体积大为减少。开关电源的工作频率目前基本上是工作在50kHz,是线性稳压电源的1000倍,这使整流后的滤波效率几乎也提高了1000倍;即使采用半波整流后加电容滤波,效率也提高了500倍。在相同的纹波输出电压下,采用开关电源时,滤波电容的容量只是线性稳压电源中滤波电容的1/500~1/1000.电路形式灵活多样,有自激式和他激式,有调宽型和调频型,有单端式和双端式等等,设计者可以发挥各种类型电路的特长,设计出能满足不同应用场合的开关电源。  开关稳压电源缺点:  开关稳压电源的缺点是存在较为严重的开关干扰。开关稳压电源中,功率调整开关晶体管V工作在开关状态,它产生的交流电压和电流通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采取一定的措施进行抑制、消除和屏蔽,就会严重地影响整机的正常工作。此外由于开关稳压电源振荡器没有工频变压器的隔离,这些干扰就会串入工频电网,使附近的其他电子仪器、设备和家用电器受到严重干扰。  目前,由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因而造价不能进一步降低,也影响到可靠性的进一步提高。所以在我国的电子仪器以及机电一体化仪器中,开关稳压电源还不能得到十分广泛的普及及使用。特别是对于无工频变压器开关稳压电源中的高压电解电容器、高反压大功率开关管、开关变压器的磁芯材料等器件,在我国还处于研究、开发阶段。  在一些技术先进国家,开关稳压电源虽然有了一定的发展,但在实际应用中也还存在一些问题,不能十分令人满意。这暴露出开关稳压电源的又一个缺点,那就是电路结构复杂,故障率高,维修麻烦。对此,如果设计者和制造者不予以充分重视,则它将直接影响到开关稳压电源的推广应用。当今,开关稳压电源推广应用比较困难的主要原因就是它的制作技术难度大、维修麻烦和造价成本较高。

    时间:2019-03-06 关键词: 开关电源 电源技术解析

  • 开关电源功率因素校正(PFC)及其工作原理

    开关电源功率因素校正(PFC)及其工作原理

      1 引言  开关电源以其效率高、功率密度高而在电源领域中占主导地位。但传统的开关电源存在一个致命的弱点,功率因数低,一般为0.45~0.75,而且其无功分量基本上为高次谐波,其中3次谐波幅度约为基波幅度的95%,5次谐波幅度约为基波幅度的70%,7次谐波幅度约为基波幅度的45%,9次谐波幅度约为基波幅度的25%。大量高次谐波电流倒灌回电网,对电网造成严重的污染。为此,IEC(国际电工委员会)制定了限制高次谐波的国际标准,最新标准为IEC1000-3-2D类。美国、日本、欧洲等发达国家已制定了相应标准,并强制执行,对于不满足谐波标准的开关电源不允许上电网。我国也制定了相应标准。因此,随着减小谐波标准的广泛应用,更多的电源设计需要结合功率因数校正(PFC)功能 [1]~[4]。  2 高次谐波和功率因数校正的关系  一般开关电源输入市电经整流后对电容充电,其输入电流波形为不连续的脉冲。这种电流除了基波分量外,还含有大量的谐波。其有效值I为:  式(1)中:I1,I2,…,In分别表示输入电流的基波分量与各次谐波分量。  谐波电流使电力系统的电压波形发生畸变,将各次谐波有效值与基波有效值的比称为总谐波畸变THD(Total Harmonic Distortion)。  它用来衡量电网的污染程度。脉冲状电流使正弦电压波形发生畸变,它对自身及同一系统的其他电子设备产生恶劣的影响,如引起电子设备的误操作,引起电话网噪音,引起照明设备的障碍,造成变电站的电容、扼流圈的过热、烧损等。  功率因数定义PFC=有功功率/视在功率,是指被有效利用功率的百分比。没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。  设电容输入型电路的输入电压为:  输入电流为:  则有效功率Pac为:  则有效功率Pap为:  从式(2)、(5)可见,抑制谐波分量即可达到减小THD、提高功率因数的目的。  3 功率因数校正的实现方法  从不同的角度看,功率因数校正技术有不同分类方法。从电网供电方式可分为单相PFC电路和三相PFC电路;从采用的校正机理可分为无源功率因数校正(PPFC)和有源功率因数校正(Active Power Factor Correction,简称APFC)两种。  无源功率因数校正技术出现最早,通常由大容量的电感、电容组成。它只是针对电源的整体负载特性表现,在开关整流器的交流输入端加入电感量很大的低频电感,以减小滤波电容充电电流尖峰。由于加入的电感体积大,增加了开关整流器的体积,此方法虽然简单,但效果不很理想,适于应用到重量体积不受限制的小型设备。  有源功率因数校正是用一个转换器串入整流滤波电路与DC/DC转换器之间(基本原理如图1所示),通过特殊的控制强迫输入电流跟随输入电压,反馈输出电压使之稳定,从而使DC/DC转换器的输入实现预稳。这种方法的特点是控制复杂,但体积大大减小,设计也易优化,从而进一步提高了性能。由于这个方案中应用了有源器件,故称为有源功率因数校正。  从原理图来看,APFC基本电路就是一种开关电源,但它与传统开关电源的区别在于:DC/DC变换之前没有滤波电容,电压是全波整流器输出的半波正弦脉动电压,这个正弦半波脉动直流电压和整流器的输出电流与输出的负载电压都受到实时的检测与监控,其控制的结果是达到全波整流器输入功率因数近似为1。  4 功率因数校正技术的分类  目前市场上使用较多的是单相高频开关电源,针对这种情况,我们对单相有源功率因数校正(APFC)作一简单分类。  一般主要有两种基本的APFC:一种是变换器工作在不连续导电模式的“电压跟随器”型;另一种是变换器工作在连续导电模式的“乘法器”型。另外,还有三电平PFC技术、单周期控制的PFC技术和不连续电容电压模式PFC技术等。还可以从采用的软开关技术的角度进一步对上述两种模式的APFC加以分类。  从软开关特性来划分,APFC电路可分为两类,一类是零电流开关(ZCS)PFC技术,另一类是零电压开关(ZVS)PFC技术。按软开关的具体实现方法还可进一步划分为:并联谐振型、串联谐振型、串并联谐振型以及准谐振型等软开关谐振APFC技术[5]。  从控制方法来分,APFC电路可以采用脉宽调制(PWM)、频率调制(FM)、数字控制、单环电压反馈控制、双环电流模式控制等多种控制方法。  单相有源功率因数校正按拓扑结构可分为两级模式和单级模式。  4.1两级有源功率因数校正  目前研究的两级PFC电路是由两级转换器组成:第一级是PFC转换器,目的在于提高输入的功率因数并抑制输入电流的高次谐波;第二级为DC/DC转换器,目的在于调节输出以便与负载匹配。具体实现方式很多,在通信用大功率开关整流器中,主要采用的方法是在主电路输入整流和功率转换电路之间串入一个校正的环节(Boost PFC电路)。典型的两级转换器的结构如图2所示。  由于两级分别有自己的控制环节,所以电路有良好的性能。它具有功率因数高、输入电流谐波含量低,以及可对DC/DC转换器进行优化设计等优点。但两级PFC电路也有两个主要缺点:一是由于有两套装置,增加了器件的数目和成本;二是能量经两次转换,电源的效率也会有所降低。因此,两级PFC电路一般应用于功率较大的电路中。对于小功率的场合,由于成本及体积的限制,一般采用单级功率因数校正电路。  4.2单级有源功率因数校正  单级PFC技术的基本思想,是将有源PFC转换器和DC/DC转换器合二为一。两个转换器共用一套开关管和控制电路(电路如图3所示),因此单级PFC技术降低了成本,提高了效率,减小了电路的重量和体积。  单级PFC电路具有许多优点:PFC级和DC/DC级共用1个开关管,共用1套控制电路,这就使得电路设计大为简捷,降低了硬件成本;变换中能提供任何选定的电压和电流比;由于功率实现的是一次性变换,所以能获得较高的效率和可靠性。单级PFC电路正因为具有这些优良的性能而越来越得到广泛的研究和应用。  但是,与传统的两级式DC/DC转换器相比,单级PFC转换器要承受更高的电压应力,有更多的功率损耗。这个问题在开关频率较高时显得尤为突出。而且,由于开关工作频率不断提高所带来的电磁干扰问题也日益严重,显著影响了转换器工作的可靠性和频率的提高。单级方案中还存在储能电容电压过高的情况,而且储能电容电压随着输入电压及负载的变化而升高,这将会导致电路的稳态特性受到一定的影响,同时某些元器件的体积成本会有所提高,这都是期待解决的问题。通过比较可知,在输出功率相同的情况下,单级功率因数校正电路在功率因数校正能力和电源的转换效率等方面,相对于两级功率因数校正电路而言,相对要差一些。近些年,专家学者先后提出了许多零电压及零电流软开关技术,特别是将软开关技术与单级隔离型PFC技术结合在一起的方法,另外,怎样降低储能电容上的电压也是现在单级功率因数校正研究的热点。  5 有源功率因数校正的控制方式  根据电感电流是否连续,APFC有下面几种工作模式:不连续导通模式DCM(Discontinuous Conduction Mode)和连续导通模式CCM(Continuous Conduction Mode)。一般认为,采用电流连续导通方式,可利于实现输入EMI滤波电路小型化,并可使电流应力减小,实现高效率[6]- [7]。  DCM控制又称电压跟踪方法(Voltage Follower),它是PFC中简单而实用的一种控制方式。这类转换器工作在不连续导电模式,开关管由输出电压误差信号控制,开关周期为常数。由于峰值电感电流基本上正比于输入电压,因此,输入电流波形跟随输入电压波形变化。  DCM控制方式的优点是:(1)电路简单,不需要乘法器;(2)功率管实现零电流开通(ZCS)且不承受二极管的反向恢复电流;(3)输入电流自动跟踪电压且保持较小的电流畸变率。  但是DCM方式存在着以下两个主要问题:(1)由于电感电流不连续,造成电流纹波较大,对滤波电路要求高;(2)开关管电流应力高,在同等容量情况下,DCM中开关器件通过的峰值电流是CCM的两倍,由此导致通态损耗增加,因此只适用于小功率的场合。  中大功率电路通常采用CCM工作方式,而CCM根据是否直接选取瞬态电感电流作为反馈量,又可分为直接电流控制和间接电流控制。直接电流控制检测整流器的输入电流作为反馈和被控量,具有系统动态响应快、限流容易、电流控制精度高等优点。直接电流控制有峰值电流控制(PCMC),滞环电流控制(HCC),平均电流控制(ACMC ),预测瞬态电流控制(PICC),线性峰值电流控制(LPCM),非线性载波控制(NLC)等方式。CCM控制方式的优点为:(1)输入和输出电流纹波小,THD和EMI小;(2)器件导通损耗小;(3)适用于大功率场合。APFC的控制电路方式很多,为使控制部分简单化、小型化,己有IC厂家生产出各种不同性能和用途的专用集成电路,一般控制方式有两类:利用乘法器控制法及电压跟随器方法。乘法器控制法包括:电流峰值控制、电流滞环控制以及平均电流控制,电压跟随器方法包括:零电流连

    时间:2019-03-06 关键词: 开关电源 电源技术解析 功率因素

  • 开关电源中RC缓冲电路的设计应用

    开关电源中RC缓冲电路的设计应用

      在带变压器的开关电源拓扑中,开关管关断时,电压和电流的重叠引起的损耗是开关电源损耗的主要部分,同时,由于电路中存在杂散电感和杂散电容,在功率开关管关断时,电路中也会出现过电压并且产生振荡。如果尖峰电压过高,就会损坏开关管。同时,振荡的存在也会使输出纹波增大。为了降低关断损耗和尖峰电压,需要在开关管两端并联缓冲电路以改善电路的性能。  缓冲电路的主要作用有:一是减少导通或关断损耗;二是降低电压或电流尖峰;三是降低dV/dt或dI/dt。由于MOSFET管的电流下降速度很快,所以它的关断损耗很小。虽然MOSFET管依然使用关断缓冲电路,但它的作用不是减少关断损耗,而是降低变压器漏感尖峰电压。本文主要针对 MOSFET管的关断缓冲电路来进行讨论。  RC缓冲电路设计  在设计RC缓冲电路时,必须熟悉主电路所采用的拓扑结构情况。图l所示是由RC组成的正激变换器的缓冲电路。图中,当Q关断时,集电极电压开始上升到2Vdc,而电容C限制了集电极电压的上升速度,同时减小了上升电压和下降电流的重叠,从而减低了开关管Q的损耗。而在下次开关关断之前,C必须将已经充满的电压2Vdc放完,放电路径为C、Q、R。  假设开关管没带缓冲电路,图1所示的正激变换器的复位绕组和初级绕组匝数相同。这样,当Q关断瞬间,储存在励磁电感和漏感中的能量释放,初级绕组两端电压极性反向,正激变换器的开关管集电极电压迅速上升到2Vdc。同时,励磁电流经二极管D流向复位绕组,最后减小到零,此时Q两端电压下降到Vdc。图2所示是开关管集电极电流和电压波形。可见,开关管不带缓冲电路时,在Q关断时,其两端的漏感电压尖峰很大,产生的关断损耗也很大,严重时很可能会烧坏开关管,因此,必须给开关管加上缓冲电路。  当开关管带缓冲电路时,其集电极电压和电流波形如图3所示(以正激变换器为例)。  在图1中,当Q开始关断时,其电流开始下降,而变压器漏感会阻止这个电流的减小。一部分电流将继续通过将要关断的开关管,另一部分则经RC缓冲电路并对电容C充电,电阻R的大小与充电电流有关。  Ic的一部分流进电容C,可减缓集电极电压的上升。通过选取足够大的C,可以减少集电极的上升电压与下降电流的重叠部分,从而显着降低开关管的关断损耗,同时还可以抑制集电极漏感尖峰电压。  图3中的A-C阶段为开关管关断阶段,C-D为开关管导通阶段。在开关管关断前,电容C两端电压为零。在关断时刻(B时刻),C会减缓集电极电压的上升速度,但同时也被充电到2Vdc(在忽略该时刻的漏感尖峰电压的情况下)。  电容C的大小不仅影响集电极电压的上升速度,而且决定了电阻R上的能量损耗。在Q关断瞬间,C上的电压为2Vdc,它储存的能量为0.5C(2Vdc)2焦耳。如果该能量全部消耗在R上,则每周期内消耗在R上的能量为:  对限制集电极上升电压来说,C应该越大越好;但从系统效率出发,C越大,损耗越大,效率越低。因此,必须选择合适的C,使其既能达到一定的减缓集电极上升电压速度的作用,又不至于使系统损耗过大而使效率过低。  在图3中,由于在下一个关断开始时刻(D时刻)必须保证C两端没有电压,所以,在B时刻到D时刻之间的某时间段内,C必须放电。实际上,电容C在C-D这段时间内,也可以通过电阻R经Q和R构成的放电回路进行放电。因此,在选择了一个足够大的C后,R应使C在最小导通时间ton内放电至所充电荷的5%以下,这样则有:  式(1)表明R上的能量损耗是和C成正比的,因而必须选择合适的C,这样,如何选择C就成了设计RC缓冲电路的关键,下面介绍一种比较实用的选择电容C的方法。  事实上,当Q开始关断时,假设最初的峰值电流Ip的一半流过C,另一半仍然流过逐渐关断的Q集电极,同时假设变压器中的漏感保持总电流仍然为Ip。那么,通过选择合适的电容C,以使开关管集电极电压在时间tf内上升到2Vdc(其中tf为集电极电流从初始值下降到零的时间,可以从开关管数据手册上查询),则有:  因此,从式(1)和式(3)便能计算出电容C的大小。在确定了C后,而最小导通时间已知,这样,通过式(2)就可以得到电阻R的大小。  带RC缓冲的正激变换器主电路设计  1 电路设计  图4所示是一个带有RC缓冲电路的正激变换器主电路。该主电路参数为:Np=Nr=43匝。Ns=32匝,开关频率f=70 kHz,输入电压范围为直流48~96 V,输出为直流12 V和直流0.5 A。  开关管Q为MOSFET,型号为IRF830,其tf一般为30 ns。  Dl、D2、D3为快恢复二极管,其tf很小(通常tf=30 ns)。  本设计的输出功率P0=V0I0=6 W,假设变换器的效率为80%,每一路RC缓冲电路所损耗的功率占输出功率的1%。这里取Vdc=48 V。  2 实验分析  下面分两种情况对该设计进行实验分析,一是初级绕组有缓冲,次级无缓冲;二是初级无缓冲,次级有缓冲。  (1)初级绕组有缓冲,次级无缓冲  该实验测量的是开关管Q两端的漏源电压,实验分以下两种情况:  第一种情况是RS1=1.5 kΩ,CS1不定,输入直流电压Vdc为48 V。  其实验结果为:在RS1不变的情况下,CSl越大,虽然开关管Q的漏感尖峰电压无明显降低,但它的漏源电压变得平缓了,这说明在初级开关管的RC缓冲电路中,CSl应该选择比较小的值。  第二种情况是CSl=33 pF,RS1不定,输入直流电压Vdc为48 V。其结果是:当CS1不变时,RS1越大,开关管Q的漏感尖峰电压越大(增幅比较小)。  可见,RC缓冲电路中,参数R的大小对降低漏感尖峰有很大的影响。在选定一个合适的C,同时满足式(2)时,R应该选择比较小的值。  (2)次级绕组有缓冲,初级无缓冲  本实验以D2、D3的阴极作为公共端来测量快恢复二极管的端压,其结果是,当R不变时,C越大,二极管两端的漏感尖峰越小。同时理论上,如果C为无穷大时,二极管两端的电压中就没有漏感尖峰。而在实际中,只需让二极管两端电压的漏感尖峰电压在其端压峰值的30%以内就可以满足要求了,这样同时成本也不会太高。  3 设计参数的确定  通过实验分析可见,在次级快恢复二极管的RC缓冲电路中,当选择了适当大小的电容C时,在满足式(2)的情况下,电阻R应该选择得越小越好。  最终经过实际调试,本设计选择的RC缓冲电路参数为:  初级:RS1=200,CSl=100 pF  次级:RS2=RS3=5l,CS2=CS3=1000 pF  本设计的初级开关管的RC缓冲电路中的C值虽然选得稍微比计算值大一些,但损耗也不是很大,因此还是可以接受的。相对初级而言,次级快恢复二极管的 RC缓冲电路中的C值就选得比计算值大得多,系统的损耗必然增大。但是,并联在快恢复二极管两端的RC缓冲电路主要是为了改善系统输出性能,因此选择比较大的C值虽然会使系统的整体效率降低,但二极管两端的漏感尖峰就减小了很多,而且输出电压的纹波也可以达到指定要求。  结束语  根据以上给出的公式,可以很好而且很方便地选择出合适的RC缓冲电路。但是在工程应用中,应该根据系统设计的性能指标,通过实际调试才能得到真正合适的参数。有时候,为了达到系统的性能指标,牺牲一定的效率也是必要的。总之,在设计RC缓冲电路参数时,必须综合考虑系统性能和效率,最终选择合适的 RC参数。

    时间:2019-03-06 关键词: rc 开关电源 电源技术解析 缓冲电路

  • 开关电源转换器有源功率因数校正技术

      由于输人端有整流元件和滤波电容,许多由整流电源供电的电子设备,使市电输人端的功率因数仅为0.6~0.65。用有源功率因数校正技术( 简称APFC)可以把输入功率因数提高到0.95~0.99,使输人电流的THD小于10%,既可以治理对市电电网的谐波“污染”,又可以提高开关电源的整体效率。单相APFC国内外开发较早,技术也比较成熟;三相APFC则类型较多,还有待进一步的研究与发展。  一般的高功率因数AC/DC开关电源由两级主电路组成。在整流器和DC/DC转换器之间,加一级前置PFC转换器,使交流输人端的功率因数提高到 接近于1,同时又使输出直流电压可以调整。两级高功率因数AC/DC开关电源,至少需要两个主开关管和两套控制驱动电路。对于小功率开关电 源,采用两级主电路结构,总体效率较低、成本较高。  如果对输人功率困数的要求不特别高时,用PFC转换器和后级的DC/DC转换器组合成一个主电路,构成单级高功率因数AC/DC开关电源,只用一 个主开关管就可以把功率因数校正到0.8以上,并使输出直流电压可调,这种主电路结构的转换器称为单管单级(Sing1e SwitchSing1e Stage, S4)转换器,即S4PFC转换器。例如,一种隔离式S4PFC AC/DC转换器,前置PFC转换器采用DCM运行的Boost转换器,后置电压调节器主电路为反激 式转换器,按照CCM或DCM运行;两级电路合用一个主开关管。当然,如果加有源钳位或其他软开关技术,还需要一个辅助开关管,称为单级 (Sing1e Stage,S2)有隔离功率因数校正软开关电源。  香港理工大学报道了S2有隔离功率困数校正软开关电源的实验结果:80V/W·150 kHz,效率86.5%,功率因数0.98,THD 13%,输入/输出电 压分别为110V AC和280V DC。

    时间:2019-03-06 关键词: 转换器 开关电源 电源技术解析

  • 从印制板到反激电源 开关电源设计

    从印制板到反激电源 开关电源设计

      谈多年开关电源的设计心得,从开关电源印制板的设计、印制板布线、印制板铜皮走线、铝基板和多层印制板在开关电源中的应用,到反激电源的占空比,绝对的实践精华!  开关电源印制板的设计  首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。  1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电 源的EMC性能影响较大。  输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解 电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许 可将其放置在进风口。  控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现 一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流 点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。  开关电源印制板布线原则  下面谈一谈印制板布线的一些原则。  线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑 到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小 间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理 的布线密度及有一个较经济的成本。  最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。  鉴于有一些相关标准对线间距有较明确的规定,则要严格按照标准执行,如交流入口端至熔断器端连线。某些电源对体积要求很高,如模块电源。一般变压器输入 侧线间距为1mm实践证明是可行的。对交流输入,(隔离)直流输出的电源产品,比较严格的规定为安全间距要大于等于6mm,当然这由相关的标准及执行方法 确定。一般安全间距可由反馈光耦两侧距离作为参考,原则大于等于这个距离。也可在光耦下面印制板上开槽,使爬电距离加大以满足绝缘要求。一般开关电源交流 输入侧走线或板上元件距非绝缘的外壳、散热器间距要大于5mm,输出侧走线或器件距外壳或散热器间距要大于2mm,或严格按照安全规范执行。  常用方法:上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。  方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有 有一定抗潮湿的能力。聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。  注意:某些器件绝缘被覆套不能用来作为绝缘介质而减小安全间距,如电解电容的外皮,在高温条件下,该外皮有可能受热收缩。大电解防爆槽前端要留出空间,以确保电解电容在非常情况时能无阻碍地泻压.  印制板铜皮走线注意事项  走线电流密度:现在多数电子线路采用绝缘板缚铜构成。常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。为 保证走线机械强度原则线宽应大于或等于0.3mm(其他非电源线路板可能最小线宽会小一些)。铜皮厚度为70μm 线路板也常见于开关电源,那么电流密度可更高些。  补充一点,现常用线路板设计工具软件一般都有设计规范项,如线宽、线间距,旱盘过孔尺寸等参数都可以进行设定。在设计线路板时,设计软件可自动按照规范执行,可节省许多时间,减少部分工作量,降低出错率。  一般对可靠性要求比较高的线路或布线线密度大可采用双面板。其特点是成本适中,可靠性高,能满足大多数应用场合。  模块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产。  单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。  今天谈谈单面印制板设计的一些体会,由于单面板具有成本低廉,易于制造的特点,在开关电源线路中得到广泛应用,由于其只有一面缚铜,器件的电器连接,机械固定都要依靠那层铜皮,在处理时必须小心。  为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。一般焊环宽度应大于 0.3mm。焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚 直径0.1-0.2mm。多引脚器件为保证顺利查件,也可更大一些。  电气连线应尽量宽,原则宽度应大于焊盘直径,特殊情况应在连线于与焊盘交汇必须将线加宽(俗称生成泪滴),避免在某些条件线与焊盘断裂。原则最小线宽应大于0.5mm。  单面板上元器件应紧贴线路板。需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力 冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。  单面板焊接面引脚在不影响与外壳间距的前题条件下,可留得长一些,其优点是可增 加焊接部位的强度,加大焊接面积、有虚焊现象可即时发现。引脚长剪腿时,焊接部位受力较小。在台湾、日本常采用把器件引脚在焊接面弯成与线路板成45度 角,然后再焊接的工艺,的其道理同上。今天谈一谈双面板设计中的一些事项,在一 些要求比较高,或走线密度比较大的应用环境中采用双面印制板,其性能及各方面指标要比单面板好很多。  双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可 比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。但是有一个弊端,如果孔过大,波峰焊时在射流锡冲击下 部分器件可能上浮,产生一些缺陷。  大电流走线的处理,线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种  1, 将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。  2, 在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。  3, 在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。在阻焊层放置线的部位会不涂阻焊剂。线路镀锡的几种方法如上,要注意的是,如果很宽的的走线全部镀上锡,在焊接以后,会粘接大量焊锡,并且分布很不均匀,影响美观。一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm 双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过 信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法,有一个技巧,尽量把非接地的走线放置在

    时间:2019-03-06 关键词: 开关电源 电源技术解析 印制板 反激电源

  • 让你有个初步了解 详解开关电源的分类

      人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。  一、 DC/DC变换  DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:  (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。  (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。  (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。  还有Sepic、Zeta电路。上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。  二、AC/DC变换  AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。  AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

    时间:2019-03-06 关键词: 开关电源 电源技术解析

  • 基于DS80C320的通信电源监控系统设计

    基于DS80C320的通信电源监控系统设计

    近年来。通信行业发展异常迅速,电源系统是通信的动力中心,通信电源系统的工作稳定性直接关系到通信机房及基站的正常运行。通信电源是通信网络的“心脏”,通信电源系统稳定、可靠的运行直接关系到通信的稳定性及可靠性。目前大型通信电源的供电方式多采用集中供电的方式,一旦发生供电故障,将直接引起整个通信系统的瘫痪。、通信电源的传统维护方式主要依靠人工看守,工作量大,效率低下,造成设备发生故障而没有及时进行处理而产生的重大通信阻断时有发生。因此对在网运行通信电源设备实现远程实时监测,有利于及时发现电源故障,减少人为因素,对保证供电系统稳定、可靠运行显得十分重要。‘  目前,通信电源系统广泛使用高频开关电源系统设备,其智能化程度高。在运行过程中,电源系统的具体运行要求很多,例如:若电源系统不能输出规定电流和电压或输出的电流、电压超出允许波动范围,杂音电压高于允许值时间并持续10 S以上者均判定为系统故障。原交流系统中的电压、频率或波形畸变超出规定范围持续时间大于60 S者也判定为故障。  为此,要保证通信电源系统的可靠性,通信部门应尽量从两个不同的地方引入2路市电输入,并设置2路市电电能自动倒换装置;所用设备要选用可靠性高的高频开关整流设备,采用收稿日期:2011-11锄作者简介:刘建军(1 ),男。河北省人,讲师。主要研究方向为电子工程。  模块化、热插拔式结构以便于更换,并合理配置备份设备。供电方式要大力推广分散供电,使用同一种直流电压的通信设备采用两个以上的独立供电系统。为了尽量缩短设备的平均故障修复时间,要经常分析运行参数,预测故障发生的时间并及时排除。还要提高技术维护水平,采用集中维护、远程遥信、遥测维护。  实施集中监控管理是网络技术发展的必然趋势,是现代通信网的要求,也是企业减员增效的有效措施。各种电源设备要智能化、标准化,符合开放式通信协议。  1 通信电源监控系统的框架结构及总体设计要求  通信电源监控系统的主要作用是随时监控电源的运行状态;对电压的波动、频率的波动、波形失真率、瞬时浪涌、瞬变脉冲、三相不平衡等各种质量特性指标进行监控;当故障发生时,能够及时采取相应措施并报警等。根据通信电源集中维护、统一管理的基本模式,监控系统在结构上是多级的分布式计算机监控网络,一般可分为四级:中心监控中心、区域监控中心、局站监控中心以及前端现场处理部分(包括智能设备、蓄电池检测仪、前端采集设备)。整个系统的框架结构宜采用树型结构(见图1),树型结构有很好的扩容性,以满足通信行业不断发展的需求。    图1 通信电源监控系统框架结构图  通信电源监控系统的主要功能设计如下:  (1)实时监控及显示各个通信电源设备的运行参数及相应的工作状态,当设备出现故障时具有声光报警功能,以及时提示工作人员排除故障;  (2)当故障发生时,能够及时实现主从电源准确无误的切换,同时还要保证切换时电压同频率,同相位,同幅值;  (3)对通信电源系统具有完善的保护功能,防止系统出现过压、过流、频率或相位超差及过热等现象,当出现以上现象后及时采取措施;  (4)通信功能:具有主从机组之间通信,与监控中心(上位机)通信等功能;  (5)具有记录历史数据、状态的功能。  2 基于DS80C320的监控系统硬件电路设计  DS80C320是美国DALLAS公司推出的高速低功耗8位单片机,它采用了全新设计的处理器内核,去掉了冗余的时钟和存储周期,在同样的晶振速度下每个相同的指令执行速度可以被提高1.5~3倍。它可以与80C51/80C32兼容,使用标准8051指令集。  本系统实时监控通信电源系统的电流、电压、温度、频率及相位,并将相应的数据送入微处理器,同时采集蓄电池的电压、工作电流和环境温度,定时计算蓄电池的内阻送人存贮器及微处理器;并通过微处理器将数据送入上位机。具体模块分为微处理器及外设模块,电压采集及测试模型、电流采集及测试模型、温度采集及测试模型、频率及相位测量模块、输入及显示模块、控制量输出输入模块以及通信模块,如图2所示。    图2 监控系统硬件框图  在本系统当中,微处理器采用了DS80C320芯片,从而提高了整个系统的可靠性。同时为了准确记录蓄电池的状态而扩展了相应的外部存储器。根据采集精度要求以及被采集量的特点,电流、电压及温度测试采集模块采用AD公司的高性能l2位逐次逼近式模数转换器AD574A来完成,转换时间为25 s,线性误差为±1/2 LSB,内部有时钟脉冲源和基准电压源,单通道单极性或双极性电压输入,采用28脚双立直插式封装,并通过ADG508A扩展模拟量输入通道。频率及相差采集测试模块是将信号先经过具有迟滞特性的过零比较器转换为方波,然后通过双四选一开关4052送人单片机,完全能够满足伺服系统的要求。通过定时器]rn来计算频率和相差。I/O控制的主要功能是实现了对供电断路器进行有效控制,实现主路电源、备路电源及备用发电机的有效切换。输入及显示模块采用8位7段LED显示,显示的内容包括电流、电压、频率及相差等运行数据,这些数据可以通过按键进行简单的选择,同时通过发光二极管和蜂鸣器提示运行状态。本系统硬件部分利用串口1采用RS485标准接IZl实现与上位机的通信,完成传输数据和远程报警等功能。 3 系统软件设计3.1系统软件流程  系统软件部分采用NI公司推出的一套面向测控领域的软件开发平台:Labwindows/CⅥ来进行开发。LabWin-dows/CVI是National Instruments公司(美国国家仪器公司,简称NI公司) 推出的交互式C语言开发平台。LabWin-dows/CVI将功能强大、使用灵活的C语言平台与用于数据采集分析和显示的测控专业工具有机地结合起来,利用它的集成化开发环境、交互式编程方法、函数面板和丰富的库函数大大增强了c语言的功能,为熟悉C语言的开发设计人员编写检测系统、自动测试环境、数据采集系统、过程监控系统等应用软件提供了一个理想的软件开发环境。  系统软件主程序部分的流程图如图3所示。    图3 主程序流程图  3.2软件部分的主要算法及功能  3.2.1蓄电池智能充放电算法的确定  正确合理的充放电可有效地延长蓄电池的使用寿命,本系统内置了蓄电池充放电算法的数据模型,利用下位机采集上传的数据自动生成容量对应曲线与之进行比较运算,用于确定下位机对蓄电池的充放电的管理,从而实现了蓄电池的智能充放电功能。  蓄电池智能充放电算法很多,本系统采用的算法是:神经网络算法。  神经网络算法是利用计算机来模拟大脑信号处理过程的人工智能技术,由大量简单的神经元广泛连接形成复杂的非线性系统,对采集数据进行自动归纳,从中获取这些数据的内在规律。蓄电池是一个高度非线性系统,通常很难对其充放电过程建立合理准确的数学模型。所以,在给出外部激励的条件下,神经网络算法能够利用神经网络的学习能力和并行结构模拟电池非线性特性来估计SOC值。  SOC估计采用典型的三层神经网络,其中输入、输出层的神经元个数由实际系统需要决定,中间层神经元个数取决于系统复杂度及分析精度要求。在神经网络法中,系统输入量包括电池电压、环境温度、充放电电流、电池内阻、累积放出电量等。输入量类型、数量是否选择合适会直接影响到方法模型的计算量和准确性。  3.2.2数字滤波算法  根据本系统采集精度较高、被采集的模拟量变化缓慢的特点,采取了中值滤波法来从采样数据列中提取出逼近真值的数据。中值滤波是对某一被测参数连续采样N次(一般N取奇数),然后把N次采样值从小到大,或从大到小排队,再取其中间值作为本次采样值。中值滤波对于去掉偶然因素引起的波动或采样器不稳定而造成的误差所引起的脉冲干扰比较有效,可对电流、电压、温度等数据进行多周期采样,每次采样后和有效采样值比较,如果变化幅度不超过一定幅值,采样有效;否则视为无效放弃。  4 抗干扰措施  由于系统中存在功率较大的设备,而且具有一定的电磁干扰,干扰一旦串入系统,轻则会引起误报,严重时就会导致整个系统瘫痪,甚至造成重大事故。本系统从硬件和软件两方面采取了抗干扰措施,从而保证了监控系统的可靠运行。  在硬件方面,利用光耦合器件对单片机与各种传感器、开关、执行机构隔离开来,以防止串模干扰,同时在电源进线端加去耦电容,削弱各类高频干扰,以提高硬件的抗干扰性。  在软件方面,利用了DS80C320提供的内部可编程硬逻辑看门狗来保证程序的安全性。  5 结语  与常规的电源系统相比,通信电源系统应能自动、连续、实时地监控所有变、配电设备的运行/故障状态和运行参数,还应具有故障的自动应急处理能力。实践证明, 基于DS80C320的通信电源监控系统性能优良,完全满足电源系统稳定性高的要求,具有很好的抗干扰能力,保证了整个智能建筑安全、可靠地运行。

    时间:2019-03-06 关键词: 开关电源 电源技术解析 labwindows ds80c320 cⅥ

  • 开关电源的几种热设计方法分享

    开关电源的几种热设计方法分享

    开关电源已普遍运用在当前的各类电子设备上,其单位功率密度也在不断地提高。但它们工作时会产生大量的热量,如果不能把这些热量及时地排出并使之处于一个合理的水平将会影响开关电源 的正常工作,严重时会损坏开关电源,本文就针对提高开关电源工作的可靠性,分享几种在开关电源设计中热设计的方法。为了将发热器件的热量尽快地发散出去,一般从以下几个方面进行考虑: 使用散热器、冷却风扇、金属pcb、散热膏等。在实际设计中要针对客户的要求及最佳费/效比合理地将上述几种方法综合运用到电源的设计中。由 于半导体器件所产生的热量在开关电源中占主导地位,其热量主要来源于半导体器件的开通、关断及导通损耗,从电路拓扑方式上来讲,采用零开关变换拓扑方式产 生谐振使电路中的电压或电流在过零时开通或关断可最大限度地减少开关损耗但也无法彻底消除开关管的损耗故利用散热器是常用及主要的方法。散热器是开关电源的重要部件,它的散热效率高与低关系到开关电源的工作性能,散热器通常采用铜或铝,虽然铜的热导率比铝高2倍但其价格比铝高得多,故目前采用铝材料的情况较为普遍,通常来讲散热器的表面积越大散热效果越好,散热器的热阻模型及等效电路如图1所示。半导体结温公式如下式所示:pcmax(ta)= (tjmax-ta)/θj-a (w) -----------------------(1)pcmax(tc)= (tjmax-tc)/θj-c (w) -----------------------(2)pc: 功率管工作时损耗pc(max): 功率管的额定最大损耗tj: 功率管节温tjmax: 功率管最大容许节温ta: 环境温度tc: 预定的工作环境温度θs : 绝缘垫热阻抗θc : 接触热阻抗(半导体和散热器的接触部分)θf : 散热器的热阻抗(散热器与空气)θi : 内部热阻抗(pn结接合部与外壳封装)θb : 外部热阻抗(外壳封装与空气)根据图2热阻等效回路,全热阻可写为:θj-a=θi+[θb *(θs +θc+θf)]/( θb +θs +θc+θf) ----------------(3)又因为θb比θs +θc+θf大很多,故可近似为θj-a=θi+θs +θc+θf ---------------------(4)(1)pn结与外部封装间的热阻抗(又叫内部热阻抗) θi是由半导体pn结构造、所用材料、外部封装内的填充物直接相关.每种半导体都有自身固有的热阻抗.(2)接触热阻抗θc是由半导体、封装形式和散热器的接触面状态所决定.接触面的平坦度、粗糙度、接触面积、安装方式都会对它产生影响。当接触面不平整、不光滑 或接触面紧固力不足时就会增大接触热阻抗θc。在半导体和散热器之间涂上硅油可以增大接触面积,排除接触面之间的空气而硅油本身又有良好的导热性,可以大 大降低接触热阻抗θc。(3)绝缘垫热阻抗θs绝缘垫是用于半导体器件和散热器之间的绝缘.绝缘垫的热阻抗θs取决于绝缘材料的材质、厚度、面积。下表中列出几种常用半导体封装形式的θs+θc(4)散热器热阻抗θf散热器热阻抗θf与散热器的表面积、表面处理方式、散热器表面空气的风速、散热器与周围的温度差有关。因此一般都会设法增强散热器的散热效果,主要的方法有增加散热器的表面积、设计合理的散热风道、增强散热器表面的风速。散热器的散热面积设计值如图3所示: 图4但如果过于追求散热器的表面积而使散热器的叉指过于密集则会影响到空气的对流,热空气不易于流动也会降低散热效果。自然风冷时散热器的叉指间距应适当增大,选择强制风冷则可适当减小叉指间距。如图4所示:(5)散热器表面积计算s=0.86w/(δt*α) (m2)δt: 散热器温度与周围环境温度(ta)的差(℃)α: 热传导系数,是由空气的物理性质及空气流速决定。α由下式决定。α=nu*λ/l ()λ:热电导率(kcal/m2h)空气物理性质l:散热器高度(m)nu:空气流速系数。由下式决定。nu=0.664*√[(vl)/v’]*3√prv:动粘性系数(m2/sec),空气物理性质。v’:散热器表面的空气流速(m/sec)pr: 系数,见下表 [例] 2scs5197在电路中消耗的功率为pdc=15w,工作环境温度ta=60℃,求在正常工作时散热器的面积应是多少?解: 查2scs5197的产品目录得知:pcmax=80w(tc=25℃),tjmax=150℃且该功率管使用了绝缘垫和硅油,θs+θc=0.8℃/w从(2)式可得θi=θj-c=(tjmax-tc)/pcmax-=(150-25)/80≒1.6℃/w从(1)式可得θj-a=(tjmax-ta)/pdc=(150-60)/15=6℃/w从(4)式可得θf=θj-a-(θi+θc+θs) ≒6-(1.6+0.8)=3.6℃/w根据上述计算散热器的热阻抗须选用3.6℃/w以下的散热器,从散热器散热面积设计图中可以查到:使用2mm厚的铝材至少需要200cm2,因此需选用140*140*2mm以上的铝散热器。注:在实际运用中,tjmax必须降额使用,以80%额定节温来代替tjmax确保功率管的可靠工作。在开关电源的实际设计过程中,通常采用自然风冷与风扇强制风冷二种形式。自然风冷的散热片安装时应使散热片的叶片竖直向上放置,若有可能则可在pcb上散热片安装位置的周围钻几个通气孔便于空气的对流。强制风冷是利用风扇强制空气对流,所以在风道的设计上同样应使散热片的叶片轴向与风扇的抽气方向一致,为了有良好的通风效果越是散热量大的器件越应靠近排气风扇,在有排气风扇的情况下,散热片的热阻如下表所示:开 关电源中主要发热元件有大功率半导体及其散热器,功率变换变压器,大功率电阻。发热元件的布局的基本要求是按发热程度的大小,由小到大排列,发热量越小的 器件越要排在开关电源风道风向的上风处,发热量越大的器件要越靠近排气风扇。为了提高生产效率,经常将多个功率器件固定在同一个大散热器上,这时应尽量使 散热片靠近pcb的边缘放置。但与开关电源的外壳或其它部件至少应留有1cm以上的距离。若在一块电路板中有几块大的散热器则它们之间应平行且与风道的风向平行。在垂直方向上则发热小的器件排在最低层而发热大的器件排在较高处。发热器件在pcb的布局上同时应尽可能远离对温度敏感的元器件,如电解电容等。

    时间:2019-03-06 关键词: 开关电源 电源技术解析

  • 开关电源转换器控制技术

    由于开关电源DC/DC开关转换器的强非线性,以及它具有的离散和变结构的特点,负载性质也是多变的,主电路的性能必须满足负载大范围的 变化,所有这些,使开关电源的控制问题和控制器的设计变得比较复杂。一些新的控制方法,如自适应控制、模糊控制、神经网络控制及各种 调制方式在开关电源中的应用,已引起人们的注意。  电流型控制及多环控制(Mu1ti-Loop CONtro1)已经在开关电源中得到较广泛的应用;电荷控制(Charge Contro1)、一周期控制(One Cyc1e Contro1)、H∞控制、DSP控制等技术的开发及相应专用集成控制芯片的研制,使开关电源的动态性能有了很大的提高,电路也得到了很大的简 化。  DSP(Digita1 Signa1 Processor)控制,使得某些依赖于高速数值运算的复杂控制方式的实现成为可能。全数字控制是一个新的发展趋势,已 在许多功率转换器设各中得到应用。但是过去数字控制在DC/DC转换器中用得较少,原因是对于200 kHz的开关电源来说,数字的带宽还不够高 ,而且全数字控制的费用又太高,因此阻碍了开关电源全数字化技术的发展。近两年来,开关电源的高性能全数字化控制芯片(IC)已经开发出 来,费用也已经降到了比较合理的水平。欧美已有多家公司开发并制造出了开关电源应用的数字控制芯片及软件。  实时数字控制可以实现快速、灵活的控制设计,使开关电源的性能更好,改善了电路的瞬态响应性能,使之速度更快、精度更高,可靠性更 强。数字控制可以实现精细的非线性算法,监控多部件的分布电源系统,减少产晶测试和调整的时间,使产品生产率更高。

    时间:2019-03-06 关键词: 控制技术 转换器 开关电源 电源技术解析

发布文章

技术子站

更多

项目外包