当前位置:首页 > 工业控制 > 工业控制
[导读]大脑、心脏与肺患有脑病和心肺病的人们受益于21世纪电子、生物以及医疗技术的协同。生物医学电子学研究的动力来自于"婴儿潮"人口的老化及他们的医疗需求。这一局面刺激了新型生物技术的快速发展,以及在预防医学领域

大脑、心脏与肺患有脑病和心肺病的人们受益于21世纪电子、生物以及医疗技术的协同。

生物医学电子学研究的动力来自于"婴儿潮"人口的老化及他们的医疗需求。这一局面刺激了新型生物技术的快速发展,以及在预防医学领域创新的医疗诊断与治疗方式的采用。后来,植入技术与先进无线电子媒介将有助于减缓今天社会高涨的医疗费用,使我们今后更健康长寿。

本文第一部分讨论了眼睛和耳朵,本部分将讨论大脑、心脏和肺,技术的发展将改善工程、生物以及医学之间的桥梁,增强这些器官的功能。

本文将揭示出新装置的微型化、便携能力、连接性、人性化、安全以及可靠性是如何推动这方面的尝试,从而改善人体中那些老化或带病/损伤器官所要求的脆弱性质与微妙平衡。

大脑

对于癫痫、帕金森症(PD)甚至强迫症(OCD)患者,闭合深脑刺激(CDBS)是一个实现生物医学电子解决方案的优秀例子,它改善了那些遭受这些痛苦折磨的人们的生活质量。

DBS系统通过检测病人的脑电波(EEG),自动产生DBS电脉冲,防止癫痫的发作,甚至帮助减轻PD的震颤。DBS向大脑的不同区域发送特定的刺激。DBS用于那些拒绝药物治疗的病人,以及有症状波动和震颤的病人。

迄今为止,只有Medtronic公司有通过FDA批准的DBS产品。他们的双侧大脑DBS装置于2002年通过了FDA的批准,带有两个神经刺激器,每个用于一个大脑半球。与心脏起搏器类似,DBS用一个神经刺激器产生并提供高频的电脉冲,通过延长线与电极,送至大脑中的丘脑下核(STN)区或苍白球内侧(GPi)部分。Medtronics的Soletra神经刺激器是最先进的电池供电装置之一。

神经刺激器通常要由受过训练的技术人员在手术后编程,以寻找减轻帕金森症状的最有效信号参数。图1是Medtronic公司标准DBS产品的一个简单框图。


图1,Medtronic深脑刺激系统的框图,它采用了一个神经刺激器,为部分大脑产生和提供高频电脉冲

建议CDBS基本设计如下:

CDBS装置可以直接与记录、刺激电极连接。8个记录电极被植入到运动皮层中,64个刺激电极被植入到大脑的STN部分。这种64通道可单点控制的刺激能够获得各种刺激模式,最有效地治疗帕金森症状。

从植入微电极获得的神经信号要用8个前端低噪声神经放大器(LAN)做调整。由于神经脉冲的幅度小,有时要用集成前置放大器去放大这些小信号,然后再做数据转换。前端设计需要低噪声,以保证信号的完整性。

前端的带通LNA通常增益为100量级,而LNA的输入设计需要尽可能减小1/f噪声。可以将一种开关电容技术用于电阻模拟和1/f降噪。开关电容电路对信号做调制,这样1/f噪声就可以降低为热噪声。开关电容的放大滤波器能够同时很好地记录神经脉冲和场电势。

多个LNA被复用到一个大动态范围的对数放大器前端,进入一个模数转换器(ADC),从而不必做模拟自动增益控制。

为了覆盖大脑刺激所产生的小信号神经脉冲以及大信号局部场电势(LFP)响应的整个范围,大动态范围ADC需要对所有需要的神经信息做数字化。ADC前端所使用的对数放大器能够达到所需的动态范围。对数编码非常适用于神经信号,并且有效率,因为大动态范围可以用一个短字长来表示。为了节约面积和功耗,采用了相对较大动态范围的ADC,因此就不必采用模拟自动增益控制。

ADC需要一个数字滤波器,用于将低频神经场电势信号从神经脉冲能量中分离出来。这个工作可以采用一个22个接头的有限脉冲响应(FIR)Butterworth型数字滤波器。

使用数字滤波器而不是模拟或混合信号滤波器有很多优点。首先,数字滤波器是可编程的,因此可以调整其运行, 而不用修改硬件, 而模拟滤波器只有修改设计才能做更改。数字滤波器用作双工器,将脉冲与LFP的两个频段分离开来。模拟滤波器电路容易漂移,并依赖于温度,而数字滤波器则没有这些问题,无论是时间还是温度都不会有影响。

电刺激器生成64个通道的两相电荷平衡刺激电流。一只专用控制器通过一个I/O通道,产生这些刺激模式,控制64只电流导引DAC.64个DAC可以构成一个级联的共享2位粗粒度电流DAC和64个独立的双向4位细粒度DAC,或类似的配置。

DAC有48种可能的电流值。可以使用一个细粒度ADC和一个极性转换开关,选择DAC的正负输出,达到电荷平衡的双相刺激,这有助于减少长期的组织损伤风险。

图2是一个用于CDBS系统的单芯片,它与一只微处理器连接,就可获得一个完整的CDBS系统。该项目主管Michael Flynn说:"微处理器告诉芯片有关位置和方式的信息,芯片做其它工作。"


图2,典型的闭环深脑刺激(CDBS)芯片系统框图

在医疗电子领域,飞思卡尔一直与做定制模拟设计的Cactus半导体公司合作。Cactus半导体公司的医疗业务集中在同时涉及可植入和便携应用的集成电路设计,如神经刺激、起搏、除颤、超声,以及医疗监护(如血糖仪)。(见附文)

飞思卡尔也有采用低功耗微控制器、集成模拟前端(AFE)以及低功耗算法的医疗解决方案。其无线通信解决方案能确保低功耗的运行模式,以及能够快速唤醒的睡眠模式。

为了推出下一代DBS , 以及供研究人员探索神秘大脑的工具,Medtronic公司正在开发双向脑机接口(BMI)。一旦完成了所有实验室试验,并在不久的将来被批准用于人脑研究,这种技术有望成为大脑研究前沿的重要工具。现在它正处于临床前期研究阶段,尚没有被批准的产品。

正如图3中的功能框图所示,神经接口(NI)技术核心是当前已发布神经刺激器中的刺激器和遥测系统(Medtronic的ActivaPC)。


图3,这个功能框图表示了一个双向神经接口系统,神经接口(NI)技术核心是已发布神经刺激器中存在的刺激器与遥测系统

参见图4,传感器硬件、算法处理器以及固件部分插入到现有架构中,在物理域和算法域之间有定义良好的信号路径。


图4,双向脑机接口原型中的传感器硬件、算法处理器与固件区都插到现有架构中,并有物理域和算法域中定义良好的信号路径

心脏

"体积小"、"无线"、"无接触",这些词汇都不可能与过去的ECG装置搭上关系。现在电子技术的新进展促成了更紧凑更便携的设计,有些带有无线功能,传感器甚至不需要与人体有物理或电阻触点。

集成电路的发展造就了ECG设计的小型化,如德州仪器公司高集成度的ADS1298R AFE,它还包含了全集成的呼吸阻抗测量功能。图5给出了一个集成AFE设备,它就像是ADS12998加上ECG架构的其它重要部分。


图5,带有集成模拟前端(AFE)设备心电解决方案

ECG系统功能与进展

ECG机的基本功能包括ECG波形显示(可以采用LCE屏幕或打印纸介质)、心律指示及采用按键的简单用户界面。越来越多的ECG产品中需要更多的功能,例如用方便介质做病人记录的存储,无线/有线传输,以及在有触摸功能大型LCD屏的2D/3D显示等。

多级诊断能力也在为医生和没有特殊ECG训练的人们提供帮助,让他们理解ECG图形,以及对某些心脏状况的提示(下面会讨论Monebo算法)。当ECG信号被捕捉和数字化时,将被送去做显示和分析,分析工作涉及更进一步的信号处理。

信号采集的挑战

ECG信号的测量可能极具挑战性,因为存在着大的DC偏压,以及各种干扰信号。一个典型电极上的这种电势可以高达300mV.干扰信号包括来自电源的50Hz/60Hz干扰、由于病人活动而造成的运动干扰、电外科设备的射频干扰、除颤脉冲、起搏器脉冲,以及其它监护设备的干扰。

对于不同的最终设备, 一台ECG将需要不同的精度和带宽:- 频率在0.05Hz~30Hz之间的标准监护需求;- 频率从0.05Hz~1000Hz的诊断型监护需求。

采用高输入阻抗仪表放大器(INA)可以抑制掉一些50Hz/60Hz的共模干扰,它消除了两个输入端上共同的交流线噪声。要进一步抑制线路上的电源噪声,可将信号反向,再由一个放大器通过右腿回送给病人。只要几微安甚至更小的电流,就可以显着提高CMR,并保持在UL544的限制范围内。另外,50Hz/60Hz的数字陷波滤波器也可以进一步降低这种干扰。

模拟前端的选项

对于便携ECG而言,优化模拟前端的功耗以及PCB区非常关键。由于技术的进步,现在有几种前端的选择:

- 采用低分辨率ADC(需要所有的滤波器);

- 采用高分辨率ADC(需要少量滤波器);

- 采用Σ-Δ ADC(不需要滤波器,除INA外不需要放大器,无DC偏移);

- 采用顺序或同步采样方案。

当使用低分辨率( 16位)ADC时,信号需要显着地提高增益(通常是100x~200x),才能达到所需分辨率。当使用高分辨率(24位)ADC时,信号需要4x~5x的适度增益。这样就可以省掉第二个增益级,以及用于消除DC偏移的电路。这样就从整体上减少了面积和成本。另外,Δ-Σ方案还保留了信号的全部频率分量,从而为数字后处理带来了极大的灵活性。

当采用顺序采样方案时, 每个通道都将ECG的导线复用到一个ADC上。此时,相邻通道之间有一个确定的扭曲。当采用同步采样方案时, 每个通道都有一个专用ADC,因此通道之间没有扭曲。

飞思卡尔有大量低成本的开发板,叫做MED-EKG模块,这是一种极其万能的系统,设计者可以快速地建立一个心电系统的原型。当用作飞思卡尔Tower系统的一部分时,设计者可获得一个全功能的系统,通过一个定制设计的电路板,只要更换套件中的任何单个模块,就可以方便地修改、更换或升级成一个定制的设计。

另外, 采用Monebo Kinetic ECG算法也使设计者能够为用户提供对ECG波形的信号处理与解析,从而帮助保健专家获取心脏的参数。它提供高度精确的QRS(在一个典型心电图上能看到的一组三个相连波-通常为心电图轨迹中最重要、目视最明显的部分)检测,并能对多达16线的ECG捕捉数据做特征提取、心拍分类、间隔测量及节律分析等。

无触点ECG不再是科学幻想。Plessey半导体公司与英国苏塞克斯大学开发了电势集成电路(EPIC)传感器,这是一种电势检测(EPS)技术,这种传感器的阵列只要装在病人的胸口,就可以获得相当于12线ECG的读数,而没有一堆导线、导电胶和容易脱落的电极。

医用呼吸机(也叫辅助呼吸机,或机械式呼吸机(MV))能将空气推入病人的肺内。呼吸机可以在重症监护治疗中用作人工呼吸,或家庭中治疗呼吸暂停疾病。现代设备采用了智能电路,能够混合气体,或根据传感器的数据确定一个固定或受控的风扇速度。意法半导体公司的解决方案包括所需要的全部半导体器件,以及通过批准的软件,能够实现安静且可靠的运行。

自从机械式呼吸机发明并在医院和保健机构中使用以来,它已经拯救了很多人的生命。但重症监护病房(ICU)中用MV存活时间超过一周的病人会增加患医疗并发症如呼吸机相关肺炎(VAP)及院内感染的风险,在ICU中的死亡率高6倍。见图6.


图6,典型的辅助呼吸机框图

使用MV病人的横隔膜肌会快速萎缩,随着时间推移而越来越难以脱离呼吸机。

Avery Biomedical开发了一种呼吸起搏系统,它采用射频(RF)耦合的接收器,能同时发送电源和信号。其重要性源于以下两点:

1. 不存在植入的电池,因此没有内部损耗问题。除非机械损坏,否则对任何病人,植入体都可望终生使用,而与年龄无关。

2. 植入部件和外置部件之间没有经皮的连接。由于病人的皮肤没有损伤,因此没有对皮肤损伤的长期保护问题,也没有慢性感染风险。

另一个关键点是,系统采用的是负压呼吸原理。即通过横隔膜的收缩,使肺内压力低于大气压,让空气流入。这在生理上是正确的,也是我们现在呼吸的原理。正压换气(无论是面罩还是机械换气机)都是压气,既不自然,也有患VAP或换气相关肺炎的高风险。VAP是呼吸机依赖病人再次入院的最常见原因。降低再入院率(减少Medicare/Medicaid为他们支付的费用)是最近医疗改革的焦点之一。见图7和图8.


图7,呼吸起搏器带有用于膈神经刺激的植入电极以及RF接收器,还有向植入体发射RF信号的外部天线,完成刺激起搏功能


图8,呼吸起搏器的基本功能框图

对于下一代装置, 新的发展甚至采用血管电极的较少侵入性方法,适用于采用局部麻醉经皮插入的病人(任何需要接触内部器官或其它组织的医疗过程都通过经皮肤的针刺穿透,而不采用暴露内部器官和组织的"切口"方案),膈神经可以通过电致运动,保持横隔膜的强度与抗疲劳能力,改善呼吸,以及尽早脱离MV的可能性。一旦通过FDA和相关机构的批准,这一技术还可缩短ICU停留时间,降低死亡率,并减少医院的费用。

通过采用这种最少侵入性技术的正确膈神经刺激,可以产生有节奏的隔膜收缩。膈神经刺激的阈值电势是1.26V.封装电极激活神经所需电流预计不到引线型电极的三倍。一般采用180μs脉冲周期的平衡双相脉冲。

新型商用传感器与手持设备(如iPhone、Blackberry与iPad)的微电路创新要求有低成本、小体积和低功耗。这些努力传播到生物医学电子领域,带来了更多神奇的解决方案,可改善植入体,并通过非接触性刺激和检测装置,如感应电源与数据传输,以及低功耗RF器件,最终消除对大多数医疗植入体的需求。

附文

飞思卡尔公司内科、外科医师兼电子工程师Jose Fernandez Villase?or博士表示:"无论是外科技术还是用于控制(DBS)起搏器的电路与软件,都永远存在着改进的空间。电子电路尤为重要,因为它们必须准确地探测病人大脑细胞何时发生问题,从而决定何时做补偿,何时不做。我相信需要研究新的控制软件,提高传感器和处理单元的精度,以减少并发症的可能性。"他继续说:"作为技术提供者,我们只希望通过建立尽可能有效而安全的解决方案,从而加快这个过程。"

以下引用一段TimDenison有关Medtronic 方案的评论:" 神经接口是一个相对较新的领域,还有很多我们不知道的东西。Medtronic 将人机接口技术的发现、发展与部署作为一个参与的过程。我们已经开放了共享的模型,因此我们可以加入全球最好的科学思想,在短期内开发出实现下一代疗法的新工具,以治疗慢性、退化性疾病,比如帕金森症,经过一段时间,可能在解析大脑信号基础上,产生新的治疗方法。"

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该传感器能与测量表面实现出色的热耦合,结合了高耐湿性和快速响应的特点,并且适合恶劣工况应用,温度范围 为-40 °C 至+150 °C,防水时间长达 500 小时。此外,传感器采用氧化铝陶瓷表面,耐电压高达 2500 V...

关键字: 传感器 热耦合 功率模块

TDK 株式会社(东京证券交易所代码:6762)推出新的 B58101A0109A* (HP100) 系列热泵传感器。这是一种专为 满足汽车应用要求而设计的 NTC(负温度系数)传感器,可通过测量管道表面温度间接测量管道...

关键字: 传感器 电动汽车 热泵应用

TDK株式会社(东京证券交易所代码:6762)新近推出InvenSense SmartEdgeMLTM解决方案,这是一种先进的边缘机器学习解决方案,为用户提供了在可穿戴设备、可听戴设备、增强现实眼镜、物联网 (IoT)...

关键字: 机器学习 物联网 传感器

ILaS收发器INLT220Q集成 DC/DC 控制器,为汽车内饰和功能照明应用提供直接电池供电

关键字: LED照明 传感器 集成电路

4月22日消息,中国第一季度半导体产量激增40%,标志着成熟制程芯片在中国市场的主导地位日益巩固。

关键字: 半导体 传感器 人工智能 电动汽车

在科技日新月异的今天,传感器技术作为现代工业、汽车、航空航天等领域的关键组成部分,发挥着越来越重要的作用。其中,电子叻力角度传感器以其独特的结构和性能,成为众多应用场景下的理想选择。本文将深入剖析电子叻力角度传感器的结构...

关键字: 电子叻力角度传感器 传感器

随着农业科技的不断进步,氮磷钾传感器作为一种现代化的农业生产工具,正逐渐走进广大农户的视野。它能够实时测量土壤中的氮、磷、钾元素含量,为农民施肥提供科学依据,从而避免不必要的浪费,减少环境污染,提高施肥的精准度。然而,关...

关键字: 氮磷钾传感器 传感器

空气压力传感器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对空气压力传感器的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 传感器 压力传感器 空气压力传感器

ADC(Analog to Digital Converter, 模数转换器), 用于实现模拟信号向数字信号的转换。A/D转换的作用是将时间连续、幅值也连续的模拟信号(电信号)转换为时间离散、幅值也离散的数字信号(二进制...

关键字: ADC 转换原理 模拟信号
关闭
关闭