当前位置:首页 > 工业控制 > 电子设计自动化
[导读]在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。

在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。

层叠结构是影响PCB板EMC性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本文介绍多层PCB板层叠结构的相关内容。

对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题;

层的排布一般原则:

1、确定多层PCB板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。

2、元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;敏感信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间。这样两个内电层的铜膜可以为高速信号传输提供电磁屏蔽,同时也能有效地将高速信号的辐射限制在两个内电层之间,不对外造成干扰。

3、所有信号层尽可能与地平面相邻;

4、尽量避免两信号层直接相邻;相邻的信号层之间容易引入串扰,从而导致电路功能失效。在两信号层之间加入地平面可以有效地避免串扰。

5、主电源尽可能与其对应地相邻;

6、兼顾层压结构对称。

7、对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:

元件面、焊接面为完整的地平面(屏蔽);

无相邻平行布线层;

所有信号层尽可能与地平面相邻;

关键信号与地层相邻,不跨分割区。

注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。

8、多个接地的内电层可以有效地降低接地阻抗。例如,A信号层和B信号层采用各自单独的地平面,可以有效地降低共模干扰。

常用的层叠结构:

4层板

下面通过 4 层板的例子来说明如何优选各种层叠结构的排列组合方式。

对于常用的 4 层板来说,有以下几种层叠方式(从顶层到底层)。

(1)Siganl_1(Top),GND(Inner_1),POWER(Inner_2),Siganl_2(Bottom)。

(2)Siganl_1(Top),POWER(Inner_1),GND(Inner_2),Siganl_2(Bottom)。

(3)POWER(Top),Siganl_1(Inner_1),GND(Inner_2),Siganl_2(Bottom)。

显然,方案 3 电源层和地层缺乏有效的耦合,不应该被采用。

那么方案 1 和方案 2 应该如何进行选择呢?

一般情况下,设计人员都会选择方案 1 作为 4层板的结构。选择的原因并非方案 2 不可被采用,而是一般的 PCB 板都只在顶层放置元器件,所以采用方案 1 较为妥当。

但是当在顶层和底层都需要放置元器件,而且内部电源层和地层之间的介质厚度较大,耦合不佳时,就需要考虑哪一层布置的信号线较少。对于方案 1而言,底层的信号线较少,可以采用大面积的铜膜来与 POWER 层耦合;反之,如果元器件主要布置在底层,则应该选用方案 2 来制板。

如果采用层叠结构,那么电源层和地线层本身就已经耦合,考虑对称性的要求,一般采用方案 1。

6层板

在完成 4 层板的层叠结构分析后,下面通过一个 6 层板组合方式的例子来说明 6 层板层叠结构的排列组合方式和优选方法。

(1)Siganl_1(Top),GND(Inner_1),Siganl_2(Inner_2),Siganl_3(Inner_3),POWER(Inner_4),Siganl_4(Bottom)。

方案 1 采用了 4 层信号层和 2 层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作,但是该方案的缺陷也较为明显,表现为以下两方面:

① 电源层和地线层分隔较远,没有充分耦合。

② 信号层 Siganl_2(Inner_2)和 Siganl_3(Inner_3)直接相邻,信号隔离性不好,容易发生串扰。

(2)Siganl_1(Top),Siganl_2(Inner_1),POWER(Inner_2),GND(Inner_3),Siganl_3(Inner_4),Siganl_4(Bottom)。

方案 2 相对于方案 1,电源层和地线层有了充分的耦合,比方案 1 有一定的优势,但是

Siganl_1(Top)和 Siganl_2(Inner_1)以及 Siganl_3(Inner_4)和 Siganl_4(Bottom)信号层直接相邻,信号隔离不好,容易发生串扰的问题并没有得到解决。

(3)Siganl_1(Top),GND(Inner_1),Siganl_2(Inner_2),POWER(Inner_3),GND(Inner_4),Siganl_3(Bottom)。

相对于方案 1 和方案 2,方案 3 减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案 1 和方案 2 共有的缺陷。

① 电源层和地线层紧密耦合。

② 每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。

③ Siganl_2(Inner_2)和两个内电层 GND(Inner_1)和 POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对 Siganl_2(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。

综合各个方面,方案 3 显然是最优化的一种,同时,方案 3 也是 6 层板常用的层叠结构。通过对以上两个例子的分析,相信读者已经对层叠结构有了一定的认识,但是在有些时候,某一个方案并不能满足所有的要求,这就需要考虑各项设计原则的优先级问题。遗憾的是由于电路板的板层设计和实际电路的特点密切相关,不同电路的抗干扰性能和设计侧重点各有所不同,所以事实上这些原则并没有确定的优先级可供参考。但可以确定的是,设计原则 2(内部电源层和地层之间应该紧密耦合)在设计时需要首先得到满足,另外如果电路中需要传输高速信号,那么设计原则 3(电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间)就必须得到满足。

10层板

PCB典型10层板设计

一般通用的布线顺序是TOP--GND---信号层---电源层---GND---信号层---电源层---信号层---GND---BOTTOM

本身这个布线顺序并不一定是固定的,但是有一些标准和原则来约束:如top层和bottom的相邻层用GND,确保单板的EMC特性;如每个信号层优选使用GND层做参考平面;整个单板都用到的电源优先铺整块铜皮;易受干扰的、高速的、沿跳变的优选走内层等等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

测试电子、电气和机电设备及其组件的辐射发射,包括来自所有组件、电缆及连线上的辐射发射,用来鉴定其辐射是否符合标准的要求,一致在正常使用过程中影响同一环境中的其他设备。

关键字: emc测试 emc 电磁兼容

EMC认证是指电磁兼容性认证,是指电子设备在电磁环境中能够正常工作,而不会对周围的电子设备和环境产生干扰。EMC认证是保证电子设备在电磁环境中能够正常工作的重要认证之一。

关键字: emc emc认证 电磁兼容性

电磁兼容(EMC)是指电子设备在电磁环境中正常工作的能力,也就是说,电子设备不会产生电磁干扰,也不会受到电磁干扰的影响。在现代社会中,电子设备已经成为人们生活和工作中不可或缺的一部分,而电磁干扰也成为了一个不容忽视的问题...

关键字: emc 电磁兼容性

随着电子设备的普及和电子技术的不断发展,电磁兼容性(EMC)问题越来越受到关注。EMC是指电子设备在电磁环境中的相互影响和相互干扰的问题。在电路设计中,EMC是一个非常重要的问题,因为它关系到电子设备的可靠性、安全性和性...

关键字: emc 电磁兼容性 电路

为了规范电子产品的电磁兼容性,所有的发达国家和部分发展中国家都制定了电磁兼容标准。电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求。之所以称为基本要求,也就是说,产品即使满足了电磁兼容标准,在实际使用中也可能会...

关键字: 电磁兼容 emc emc标准

电磁兼容(EMC)是指电子设备在电磁环境中正常工作的能力,同时不会对周围的电子设备和系统造成干扰。在现代社会中,电子设备已经成为人们生活和工作中不可或缺的一部分,而EMC技术则是保证这些设备能够正常工作的重要保障。

关键字: 电磁兼容性 emc

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设...

关键字: emc 电磁兼容性 电磁

EMC测试也称为EMC(EMC)的全名为ElectroMagneticCompatibility,涉及到对电子产品的电磁干扰(EMI)和抗干扰能力(EMS)的综合评价,电磁兼容性测量主要包括试验场和试验仪器两部分,是产品...

关键字: emc 测试 硬件

在拿到整改意见书以后,需要提前定位好EMC整改计划。没有定位好计划就去盲目的整改产品就像无头的苍蝇一样到处乱动,这样只会增加整改的成本。

关键字: emc 整改 电路

你知道开关电源EMC外围电路有哪些元器件吗?压敏电阻和气体放电管工作原理一样吗,它们各有什么优缺点?共模电感、差模电感会影响EMS吗?为什么要用X电容、Y电容,二者是否可以相互替换?NTC放在哪里合适?本文简单总结EMC...

关键字: emc 共模电感 气体放电管
关闭
关闭