当前位置:首页 > 工业控制 > 电子设计自动化

在前文中我提到过,要重视信号上升时间,很多信号完整性问题都是由信号上升时间短引起的。本文就谈谈一个基础概念:信号上升时间和信号带宽的关系。

对于数字电路,输出的通常是方波信号。方波的上升边沿非常陡峭,根据傅立叶分析,任何信号都可以分解成一系列不同频率的正弦信号,方波中包含了非常丰富的频谱成分。

抛开枯燥的理论分析,我们用实验来直观的分析方波中的频率成分,看看不同频率的正弦信号是如何叠加成为方波的。首先我们把一个1.65v的直流和一个100MHz的正弦波形叠加,得到一个直流偏置为1.65v的单频正弦波。我们给这一信号叠加整数倍频率的正弦信号,也就是通常所说的谐波。3次谐波的频率为300MHz,5次谐波的频率为500MHz,以此类推,高次谐波都是100MHz的整数倍。图1是叠加不同谐波前后的比较,左上角的是直流偏置的100MHz基频波形,右上角时基频叠加了3次谐波后的波形,有点类似于方波了。左下角是基频+3次谐波+5次谐波的波形,右下角是基频+3次谐波+5次谐波+7次谐波的波形。这里可以直观的看到叠加的谐波成分越多,波形就越像方波。

图1

因此如果叠加足够多的谐波,我们就可以近似的合成出方波。图2是叠加到217次谐波后的波形。已经非常近似方波了,不用关心角上的那些毛刺,那是著名的吉博斯现象,这种仿真必然会有的,但不影响对问题的理解。这里我们叠加谐波的最高频率达到了21.7GHz。

图2

上面的实验非常有助于我们理解方波波形的本质特征,理想的方波信号包含了无穷多的谐波分量,可以说带宽是无限的。实际中的方波信号与理想方波信号有差距,但有一点是共同的,就是所包含频率很高的频谱成分。

现在我们看看叠加不同频谱成分对上升沿的影响。图3是对比显示。蓝色是基频信号上升边,绿色是叠加了3次谐波后的波形上升边沿,红色是基频+3次谐波+5次谐波+7次谐波后的上升边沿,黑色的是一直叠加到217次谐波后的波形上升边沿。

图3

通过这个实验可以直观的看到,谐波分量越多,上升沿越陡峭。或从另一个角度说,如果信号的上升边沿很陡峭,上升时间很短,那该信号的带宽就很宽。上升时间越短,信号的带宽越宽。这是一个十分重要的概念,一定要有一个直觉的认识,深深刻在脑子里,这对你学习信号完整性非常有好处。

这里说一下,最终合成的方波,其波形重复频率就是100MHz。叠加谐波只是改变了信号上升时间。信号上升时间和100MHz这个频率无关,换成50MHz也是同样的规律。如果你的电路板输出数据信号只是几十MHz,你可能会不在意信号完整性问题。但这时你想想信号由于上升时间很短,频谱中的那些高频谐波会有什么影响?记住一个重要的结论:影响信号完整性的不是波形的重复频率,而是信号的上升时间。

本文的仿真代码很简单,我把代码贴在这里,你可以自己在matlab上运行一下看看。

clc; clearall; pack;

Fs = 10e9;

Nsamp = 2e4;

t = [0:Nsamp-1].*(1/Fs);

f1 = 1e6;

x0 = 3.3/2;

x1 = x0 + 1.65*sin(2*pi*f1*t);

x3 = x0;

forn=1:2:3

x3 = x3 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t);

end

x5 = x0;

forn=1:2:5

x5 = x5 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t);

end

x7 = x0;

forn=1:2:7

x7 = x7 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t);

end

figure

subplot(221)

plot(x1)

subplot(222)

plot(x3)

subplot(223)

plot(x5)

subplot(224)

plot(x7)

x217 = x0;

forn=1:2:217

x217 = x217 + 3.3*2/(pi*n) * sin(2*pi*n*f1*t);

end

figure

plot(x217)

figure

plot(x217,"k")

holdon

plot(x1,"b")

plot(x3,"g")

plot(x7,"r")

holdoff

axis([8000 12000 -0.5 4])



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

VGA接口主要用于将计算机的数字图像信号转换成模拟信号,从而可以在显示器上显示。这种接口通常包含15个针脚,分成3排,每排5个孔,可以传输红、绿、蓝三种基本颜色的信号以及水平和垂直同步信号。

关键字: vga接口 信号 电压

上海2023年9月4日 /美通社/ -- 2023年8月8日,成都大运会正式落幕。来自113个国家和地区的6500名大学生运动员,在12个比赛日里同台竞技,展现青春与体育的力量。与此同时,在大运会的各个赛场、运动员村以及...

关键字: 信号 TV PS CE

瓦努阿图维拉港2023年8月28日 /美通社/ -- Vantage(或"Vantage Markets")欣然宣布在Vantage应用程序上推...

关键字: GE AN 信号 应用程序

(全球TMT2023年7月19日讯)三星电子宣布已完成其业内首款GDDR7的研发工作,年内将首先搭载于主要客户的下一代系统上验证。继2022年三星开发出速度为每秒24千兆比特(Gbps)的GDDR6 16Gb之后,GD...

关键字: DDR 三星电子 信号 GBPS

频谱分析仪是用于分析信号频谱结构的设备,可以用于测量信号的频率、幅度、功率、谱线宽度等参数,是现代电子测量和通信领域中不可或缺的工具。

关键字: 频谱分析仪 信号

频谱分析仪是用于分析信号的频率成分和功率的电子设备。分辨率是频谱分析仪的一个重要指标,它决定了频谱分析仪能够分辨的信号细节和频谱特征。在频谱分析仪的使用过程中,分辨率受到多种因素的影响,这些因素包括信号频率、信号强度、分...

关键字: 频谱分析仪 信号 分辨率

频谱分析仪是用于测量信号频率、幅度和功率谱等特性的重要工具,广泛应用于电子工程、通信、生物医学等领域。本文将介绍频谱分析仪的基本原理、使用方法和技巧,帮助读者更好地理解和使用频谱分析仪。

关键字: 频谱分析仪 信号

频谱分析仪是一种用于分析信号频率成分的重要仪器,能够在复杂信号中识别出各个频率成分,以及它们在不同时间段的强度和带宽。在科学研究、工业生产、通信网络、电子对抗等领域,频谱分析仪发挥着重要作用。

关键字: 频谱分析仪 信号

脉冲变压器是一种用于将电源信号转换为所需电压和电流的特殊变压器。它通常被用于直流电源或高频交流电源中,可用于稳压、反接保护、防过载等应用。当我们需要选型脉冲变压器时,需考虑以下几个方面:输出电压、最大输出电流、工作频率、...

关键字: 脉冲变压器 信号 电源

集成运算放大器是一种常见的电子元器件,它广泛应用于模拟电路、信号处理、控制系统等领域。集成运算放大器主要的功能是放大电压信号。它可以将微弱的输入信号放大成为符合实际需要的信号大小,同时也可以对信号进行滤波、积分、微分等操...

关键字: 运算放大器 电路 信号
关闭
关闭