当前位置:首页 > 单片机 > 单片机
[导读]内存管理,是指软件运行时对mcu内存资源的分配和使用的技术。主要目的是高效快速的分配使用内存资源。在适当的时候释放回收内存资源。内存管理实现的方式最终是实现两个函数:malloc和free;malloc函数用于内存申请,free函数用于内存释放。

 内存管理简介:

内存管理,是指软件运行时对mcu内存资源的分配和使用的技术。主要目的是高效快速的分配使用内存资源。在适当的时候释放回收内存资源。内存管理实现的方式最终是实现两个函数:malloc和free;malloc函数用于内存申请,free函数用于内存释放。

内存分配原理:

当指针P调用malloc申请内存的时候,先判断P要分配的内存块数(m),然后从n项开始,向下查找,直到找到连续的m块空间(即对应的内存管理项为“0”)。然后将这m个内存管理项的值都赋值为m(标记为占用)。,最后,把最后的内存地址返回给指针P,完成一次内存分配。注意:如果内存不够用的时候,或者没有连续的m块内存时,则返回NULL给P,表示分配失败。

内存释放原理:

当P申请的内存用完后,需要释放的时候,调用free函数实现。free函数先判断P指向的内存地址所对应的内存块数m。(内存管理项的值就是所分配的内存块数)将这m个内存管理项的值清零,标记释放,完成一次内存释放。

关键代码示例:

//内存分配(内部调用)

//memx:所属内存块

//size:要分配的内存大小(字节)

//返回值:0XFFFFFFFF,代表错误;其他,内存偏移地址

u32 mem_malloc(u32 size)

{

signed long offset=0;

u16 nmemb; //需要的内存块数

u16 cmemb=0;//连续空内存块数

u32 i;

if(!mallco_dev.memrdy)mallco_dev.init(); //未初始化,先执行初始化

if(size==0)return 0XFFFFFFFF; //不需要分配

nmemb=size/memblksize; //获取需要分配的连续内存块数

if(size%memblksize)nmemb++;

for(offset=memtblsize-1;offset>=0;offset--) //搜索整个内存控制区

{

if(!mallco_dev.memmap[offset])cmemb++; //连续空内存块数增加

else cmemb=0; //连续内存块清零

if(cmemb==nmemb) //找到了连续nmemb个空内存块

{

for(i=0;i //标注内存块非空

{

mallco_dev.memmap[offset+i]=nmemb;

}

return (offset*memblksize); //返回偏移地址

}

}

return 0XFFFFFFFF;//未找到符合分配条件的内存块

}

//释放内存(内部调用)

//offset:内存地址偏移

//返回值:0,释放成功;1,释放失败;

u8 mem_free(u32 offset)

{

int i;

if(!mallco_dev.memrdy)//未初始化,先执行初始化

{

mallco_dev.init();

return 1;//未初始化

}

if(offset

{

int index=offset/memblksize; //偏移所在内存块号码

int nmemb=mallco_dev.memmap[index]; //内存块数量

for(i=0;i //内存块清零

{

mallco_dev.memmap[index+i]=0;

}

return 0;

}else return 2;//偏移超区了.

}

//释放内存(外部调用)

//ptr:内存首地址

void myfree(void *ptr)

{

u32 offset;

if(ptr==NULL)return;//地址为0.

offset=(u32)ptr-(u32)mallco_dev.membase;

mem_free(offset); //释放内存

}

//分配内存(外部调用)

//size:内存大小(字节)

//返回值:分配到的内存首地址.

void *mymalloc(u32 size)

{

u32 offset;

offset=mem_malloc(size);

if(offset==0XFFFFFFFF)return NULL;

else return (void*)((u32)mallco_dev.membase+offset);

}

//重新分配内存(外部调用)

//*ptr:旧内存首地址

//size:要分配的内存大小(字节)

//返回值:新分配到的内存首地址.

void *myrealloc(void *ptr,u32 size)

{

u32 offset;

offset=mem_malloc(size);

if(offset==0XFFFFFFFF)return NULL;

else

{

mymemcpy((void*)((u32)mallco_dev.membase+offset),ptr,size); //拷贝旧内存内容到新内存

myfree(ptr); //释放旧内存

return (void*)((u32)mallco_dev.membase+offset); //返回新内存首地址

}

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭