当前位置:首页 > 单片机 > 单片机
[导读]ARM体系结构中,把复位、中断、快速中断等都看作‘异常’,当这些‘异常’发生时,CPU会到固定地址处去找指令,他们对应的地址如下: 地址 异常类型 进入时的工作模式 0x00000000 Reset Supervisor 0x00000004 Und U

ARM体系结构中,把复位、中断、快速中断等都看作‘异常’,当这些‘异常’发生时,CPU会到固定地址处去找指令,他们对应的地址如下:

地址 异常类型 进入时的工作模式

0x00000000 Reset Supervisor

0x00000004 Und Undefined

0x00000008 Soft interupt Supervisor

0x0000000c Abort(prefetch) Abort

0x00000010 Abort(data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001c FIQ FIQ

首先要明确的一点就是,无论内存地址空间是如何映射的,以上这些地址都不会变,比如当有快速中断发生时,ARM将铁定到0X0000001C这个地址处取指令。这也是BOOTLOADER把操作系统引导以后,内存必须重映射的原因!否则操作系统不能真正接管整套系统!

LINUX启动以后要初始化这些区域,初始化代码在main.c中的start_kernel()中,具体是调用函数trap_ini()来实现的。如下面所示(具体可参照entry-armv.S):

.LCvectors: swi SYS_ERROR0

b __real_stubs_start + (vector_undefinstr - __stubs_start)

ldr pc, __real_stubs_start + (.LCvswi - __stubs_start)

b __real_stubs_start + (vector_prefetch - __stubs_start)

b __real_stubs_start + (vector_data - __stubs_start)

b __real_stubs_start + (vector_addrexcptn - __stubs_start)

b __real_stubs_start + (vector_IRQ - __stubs_start)

b __real_stubs_start + (vector_FIQ - __stubs_start)

ENTRY(__trap_init)

stmfd sp!, {r4 - r6, lr}

adr r1, .LCvectors @ set up the vectors

ldmia r1, {r1, r2, r3, r4, r5, r6, ip, lr}

stmia r0, {r1, r2, r3, r4, r5, r6, ip, lr}

add r2, r0, #0x200

adr r0, __stubs_start @ copy stubs to 0x200

adr r1, __stubs_end

1: ldr r3, [r0], #4

str r3, [r2], #4

cmp r0, r1

blt 1b

LOADREGS(fd, sp!, {r4 - r6, pc})

以上可以看出这个函数初始化了中断向量,实际上把相应的跳转指令拷贝到了对应的地址。

当发生中断时,不管是从用户模式还是管理模式调用的,最终都要调用do_IRQ():

__irq_usr: sub sp, sp, #S_FRAME_SIZE

stmia sp, {r0 - r12} @ save r0 - r12

ldr r4, .LCirq

add r8, sp, #S_PC

ldmia r4, {r5 - r7} @ get saved PC, SPSR

stmia r8, {r5 - r7} @ save pc, psr, old_r0

stmdb r8, {sp, lr}^

alignment_trap r4, r7, __temp_irq

zero_fp

1: get_irqnr_and_base r0, r6, r5, lr

movne r1, sp

adrsvc ne, lr, 1b

@

@ routine called with r0 = irq number, r1 = struct pt_regs *

@

bne do_IRQ @ 调用do_IRQ来实现具体的中断处理

mov why, #0

get_current_task tsk

b ret_to_user

对于以上代码,在很多文章中都有过分析,这里不再赘述。

Linux每个中断通过一个结构irqdesc来描述,各中断的信息都在这个结构中得以体现:

struct irqdesc {

unsigned int nomask

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为了满足日益增长的数据处理需求,铁威马NAS推出了全新的性能巅峰2024年旗舰之作F4-424 Pro,并搭载了最新的操作系统--TOS 6。这款高效办公神器的问世,无疑将为企业和专业人士带来前所未有的便捷与效率。

关键字: 存储 Linux 服务器

Arm CPU正在从根本上推动AI变革,并造福地球。Arm架构是未来AI计算的基石。​

关键字: ARM AI

近日,Arm推出了Arm® Ethos™-U85神经网络处理器(NPU)和Arm Corstone™-320物联网参考设计平台,旨在满足海量的数据处理和大规模计算,加速推进边缘AI的发展进程。

关键字: ARM

为了赶超云计算市场上的竞争对手,谷歌正试图通过定制的Arm服务器芯片降低云计算服务成本。

关键字: 谷歌 ARM 定制芯片

嵌入式开发作为一个融合了计算机软硬件和系统工程的综合性领域,其成功与否往往取决于三个核心要素的有效整合与协调。这三个要素分别是:硬件平台的选择与设计、软件开发及其优化、以及系统级的设计与集成。深入理解并熟练掌握这三个方面...

关键字: 嵌入式开发 ARM

随着汽车软件数量爆发式的增长,整个行业都需要重新思考汽车产品的开发流程。为此,Arm推出了丰富的硬件IP、新的系统IP,以及全新的汽车计算与计算子系统产品路线图,旨在为各种汽车应用实现性能、功能安全、可扩展等方面的支持。

关键字: ARM 汽车电子

双系统将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对双系统的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 双系统 Windows Linux

知名移动芯片设计公司ARM最近迈出重要一步,它正式推出汽车芯片设计。ARM推出的芯片设计方案名叫Neoverse,随同芯片一起推出的还有面向汽车制造商、汽车供应商的新系统。

关键字: ARM 汽车芯片 芯片

随着通用人工智能的发展,数据中心的计算需求逐步提高。针对多模态数据、大模型的推理和训练需要更高的算力支持,而随着算力提升与之而来的还需更关注在功耗方面的优化。对于头部云计算和服务厂商而言,针对专门用例提高每瓦性能变得至关...

关键字: ARM 服务器 AI Neoverse CSS

一直以来,riscv架构都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来riscv架构的相关介绍,详细内容请看下文。

关键字: riscv ARM riscv架构
关闭
关闭