当前位置:首页 > 测试测量 > 测试测量
[导读]与十年前相比,现在的电子产品具有更多的功能。工程师们不得不设计精密的系统,常以“创造性”满足严格的功率预算,以保持高能效。预测系统的维护和保护需要快速反应系统的响应。一个关键功能是监测系统的电流消耗和压降。

与十年前相比,现在的电子产品具有更多的功能。工程师们不得不设计精密的系统,常以“创造性”满足严格的功率预算,以保持高能效。预测系统的维护和保护需要快速反应系统的响应。一个关键功能是监测系统的电流消耗和压降。

在所有的电流检测法中,使用放大器监测分流的电流是到目前为止最常用的方法。电流检测可以使用电流检测放大器(CSA)或带有外部增益设置电阻的运算放大器(Op Amp)来实现(图1)。这两者的选择,取决于性能要求和物料单(BOM) 的目标成本。

 

 

Typical op amp current sensing requires 2 to 4 precision resistors:普通的运放电流检测需要2至4个精密的电阻

NCS21xR has integrated precision resistors:NCS21xR集成精密的电阻

图1(a)带有外部增益设置电阻的运算放大器                                         图1(b)电流检测

从性能的角度,增益设置电阻之间的不匹配会影响电流测量的精度,继而影响并联器件的尺寸。其他设计考虑因素包括器件规格(输入偏置电压、共模抑制、增益误差)、并联器件尺寸、分流位置和PCB布局。我们将在随后的博客中深入分析这些因素。现在,让我们大体看看这些因素。

我们选取了四个放大器(LM358,NCS20081,NCS333和NCS214R),比较从通用到精密放大器(图2和图3中从左到右)的性能优势。

NCV214R集成增益设置电阻,以获得更好的匹配和共模性能。其他的则需要外部电阻网络。假设在LM 358、NCS20081和NCS333的性能比较中使用了匹配的电阻网络。NCS214R提供最高的精度(图2)和极高能效的方案(图3)。

 

 

With a 50 mV shunt drop: 14% offset error

50 mV分流压降:14%偏置误差

With a 50 mV shunt drop: 7% offset error

50 mV分流压降:7%偏置误差

With a 50 mV shunt drop: 0.02% offset error

50 mV分流压降:0.02%偏置误差

With a 50 mV shunt drop: 0.12% offset error

50 mV分流压降:0.12%偏置误差

Reduce offset voltage:减小偏置电压

Improve accuracy:提高精确度

System performance improves:系统性能提升

图2:对于固定的分流压降(例如50 mv),偏置误差有几个数量级的差异

 

 

To achieve 2% offset error: 350 mV shunt drop

要达到2%偏置误差:分流压降350 mV

To achieve 2% offset error: 175 mV shunt drop

要达到2%偏置误差:分流压降175 mV

To achieve 2% offset error: 0.5 mV shunt drop

要达到2%偏置误差:分流压降0.5 mV

To achieve 2% offset error: 3 mV shunt drop

要达到2%偏置误差:分流压降3 mV

Reduce voltage drop across sense resistor:减小检测电阻压降

Reduce power dissipation:降低功耗

System efficiency improves:系统能效提升

图3:若要实现最大的系统能效,对于固定的偏置误差,较低的分流压降会降低功耗

从BOM成本的角度,一个匹配良好的电阻网络将贵(~1美元)到足以抵消使用通用运放(~0.10美元)节省的成本。虽然电流检测放大器贵,但当比较完整的方案成本时,它们很可能比运放方案更便宜。

但是等等!不仅仅如此…另一个优势是:方案的尺寸。带外部电阻网络的运放不会像uQFN或SC70中的NCS21xR那样小。

请访问我们的电流检测放大器产品页,以获得更多信息,或就您的电流检测问题向我们提问。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

高增益和内部频率补偿。LM358的内部包括两个独立的运算放大器,每个放大器都具有高增益和内部频率补偿,适合于单电源或双电源工作模式。

关键字: lm358芯片 运算放大器 高增益

静态电流仅160nA,有助于消费电子和工业设备应用更加省电

关键字: 运算放大器 静态电流 消费电子

典型应用包括工业、服务器和电信基础设施电源,以及汽车信号调理和电源转换电路

关键字: 运算放大器 服务器 电源转换电路

RC正弦波振荡器是一种常用的模拟振荡器,它利用电阻(R)和电容(C)元件以及运算放大器(Op-Amp)来产生正弦波信号。这种振荡器结构简单、易于实现,并且输出信号的频率和幅度可以通过改变电阻和电容的值来调整。本文将详细介...

关键字: RC正弦波振荡器 运算放大器 正弦波信号

以下内容中,小编将对运算放大器的相关内容进行着重介绍和阐述,希望本文能帮您增进对运算放大器的了解,和小编一起来看看吧。

关键字: 放大器 运算放大器

LM324是一款四通道运算放大器,广泛应用于各种模拟电路中。了解其功能引脚图对于正确使用和配置LM324至关重要。本文将详细解析LM324的功能引脚图,帮助读者更好地理解其工作原理和应用。

关键字: LM324 运算放大器 模拟电路

本文将探讨适合乙醇和一氧化碳(CO)等电化学气体传感器应用的运算放大器。还将讨论此类应用所需的放大器性能,帮助便携式设备以更低功耗准确测量乙醇和CO,并获得更理想的结果。

关键字: 电化学传感器 运算放大器

2023 年 10 月 24 日,中国– 意法半导体的 TSB182双运算放大器为传感器带来高准确度信号调理功能,主要产品亮点包括最大 20μV 输入失调电压、100nV/°C 温漂和4V-36V的中压工作电压。

关键字: 传感器 中压运放 运算放大器

增强耐变性,延长使用寿命,适合汽车和工业应用

关键字: 运算放大器 传感器 芯片

更低漂移的隔离式霍尔效应电流传感器可降低高压系统的设计复杂性 EZShunt™ 集成式分流器产品系列不仅能够简化设计,还能降低系统成本和提高性能 上海2023...

关键字: 德州仪器 电流传感器 高精度 电流检测
关闭
关闭