当前位置:首页 > 充电吧 > 充电吧
[导读]如果古迪纳夫(John B. Goodenough,当然你也可以叫他足够好先生,我想他不会有意见)翻开他出生的1922年,会发现此时科学正在以一种肉眼可见的速度增长:波尔因为阐明原子结构得到了诺贝奖,BBC开始了跨洋无线电广播,人造胰岛素被成功提取。

“我们有些人就像是乌龟,走得慢,一路挣扎,到了而立之年还找不到出路。但乌龟知道,他必须走下去。”

——John·B·Goodenough

很多人会查自己出生那年发生过什么,好暗地里给自己的诞生一种天命昭彰的证明。如果古迪纳夫(John B. Goodenough,当然你也可以叫他足够好先生,我想他不会有意见)翻开他出生的1922年,会发现此时科学正在以一种肉眼可见的速度增长:波尔因为阐明原子结构得到了诺贝奖,BBC开始了跨洋无线电广播,人造胰岛素被成功提取。物理、化学、生物众多学科正在取得突破,同时,一大批崭新的学科正在被建立——科学界一片生机勃勃。

然而,这一切似乎跟古迪纳夫关系不大。他的父亲是大学历史老师,他还有一个年长三岁的哥哥。虽然家境富足,但他的童年似乎并不开心,按他的说法,自己童年唯一的玩伴叫Mack,是一条狗[1]。天才的童年似乎总会有一个哥哥和一条狗(比如卷福)。

“高考”前夕,古迪纳夫的父母离婚了,他爸娶了自己的研究助手。但古迪纳夫还是咬牙考进了入耶鲁。事后回忆,他觉得进入大学这种对家庭的逃离让他松了口气。

在耶鲁的日子,他过得不错。先是学习古典文学,之后转到了哲学。大一的时候为了凑学分,古迪纳夫选修了两门化学课。后来,古迪纳夫碰到一个数学教授,看他天赋异禀,就鼓励他学习数学。他听从了建议,毕业的时候取得了数学学士学位。

短短几年间,就换了四五个专业方向,这似乎也对他随后的生涯做出了某种预示。

1930年代的耶鲁校园

毕业后,二战爆发,古迪纳夫加入了美国空军,不过他没当成飞行员,而是被派到太平洋的一个海岛上收集气象数据。

退役后的他选择去芝加哥大学进修物理。当时录取他的面试官有点瞧不上这个吹了四年海风的大龄青年,嘲笑道:“在你这个年纪,科学家早已经做出他们最大的成就了。”

这话说的没错,那个年代风靡全球的智慧领袖们,哪个不是英姿勃发,爱因斯坦26岁提出相对论,爱迪生32岁点亮了白炽灯,居里夫人36岁时已经拿到了诺贝奖。

古迪纳夫,开始读博, 30岁。

还算幸运,他的导师是个大牛人,物理学家齐纳。顺便一提,齐纳在30岁时已经发明了齐纳二极管,享誉业界。

古迪纳夫的博士导师,物理学家齐纳

在芝加哥这几年,古迪纳夫的研究领域是固体物理,并在这里打下了坚实的理论基础。芝大毕业后,他被推荐去了麻省理工的的林肯实验室,主攻固体磁性的相关研究。在这里,古迪纳夫的天赋与功底得到充分发挥,他对随机存取存储器的发展做了贡献,这个技术就是后来的电脑内存。他甚至还和别人合作,冠名了一个固体磁性的规则——Goodenough-Kanamori规则。还是在这里,他第一次接触到了电池,不过当时他研究的是钠硫电池。

1976年,牛津大学化学系恰好出现了一个空缺。凭借在林肯实验室的出色工作,古迪纳夫得到了这个职位,成了无机化学实验室主任。

这年,他54岁。

初到英国, 古迪纳夫努力适应着阴郁的天气和寡淡的饭菜,从未想过这里将会是他人生的重要转折点:在这里,他的研究领域转到了电池。

牛津时期的古迪纳夫

我们不妨先来看看当时电池是什么样的。

1970年代后期,有一种电池因为使用金属锂作为电极,而被称为锂电池。同样质量下,锂电池能比其他电池储存更多的电能,因此很受市场青睐,比如当时“大哥大”手机使用的就是这种锂电池。

持有锂电池技术的是一家加拿大公司,名叫Moli Energy。正当他们准备大干一场的时候,却传来了噩耗——锂电池存在严重的安全隐患!

问世还不到半年,这种锂电池就因为起火爆炸的问题,而被全球召回。从此,Moli公司一蹶不振。这个短暂霸占全球电池市场的公司昙花一现,最后被日本NEC公司收购。

Moli公司生产的锂电池

此时,全球的电子产品市场初见端倪,大众刚刚接触到电子表、手机、电脑等新鲜玩意,这个朝阳市场无比诱人。作为电子产品的保障,电池技术又是必不可少的一环。因此,刚刚收购Moli的日本人迫不及待想解决锂电池的安全问题,并计划将这一产品发扬光大。收购了Moli的NEC投入了巨大的人力物力,仔细检测了几万块电池,经过几年的摸索,他们终于明白了锂电池爆炸的个中原因。

锂电池使用的电极材料金属锂,是世间最活泼的元素之一,极易燃烧,甚至与氮气都能发生反应。这样的特性极大拔高了锂电池的技术要求:生产组装过程中稍有不慎,泄进了空气,轻则电池报废,重则起火燃烧。而在肉眼看不到的地方,还有一个更大的隐患。因为动力学等因素,锂金属表面会形成一些“小毛刺”,叫做枝晶。随着在电池的使用,这些枝晶会越长越大,最终会刺破电池正负极之间的隔膜,造成短路,引起电池自燃。

虽然找到了问题所在,但是如何解决却让NEC陷入了困境。成分、组装、生产环境等等都可以改进,但枝晶如同幽灵一般,萦绕在锂电池中,无法摆脱。

锂枝晶的微观照片

此时,远在牛津的古迪纳夫正进行着自己的研究。虽然只学过两门化学课,但凭着过硬的固体物理功底,古迪纳夫居然在化学系也算站稳了脚跟,正在一门心思研究着一种神奇的材料——钴酸锂。

钴酸锂晶体结构,其中白色的圆球表示锂原子,红色表示氧原子,蓝色表示钴原子。

钴酸锂,化学式LiCoO2,在晶体学上属于一种层状材料。所谓的层状是指钴和氧原子的结合更紧密,形成的正八面体的平板,锂原子层就镶嵌在两个“平板”之间。正因为这种特殊的结构,使得锂原子可以在钴酸锂晶体中快速移动[6]。

如果把钴酸锂想象成一个汉堡包,钴-氧构成了两片面包,那么,锂原子就是中间的牛排,能被很轻松地抽出。正因如此,这种钴酸锂可以取代金属锂,作为电池中锂离子的提供者。而且,这种氧化物可以拔高电池的使用电压,从而提升电池储存的电量。更为重要的是,钴酸锂的对空气等不敏感,在金属锂这个发疯的公牛面前,钴酸锂乖巧的如同得到了棒棒糖的小孩。而枝晶问题在钴酸锂中也得到了改善。在一定的使用时长下,钴酸锂是一种安全系数很高的电极材料。

然而,或许是这一创新太过前卫,也可能是Moli Energy的教训太过惨烈,当时整个西方世界竟然没有一家企业敢接这个发明。甚至牛津大学自己都不愿意为钴酸锂发现申请专利。古迪纳夫只好找到另一个实验室帮忙,勉强拿下了专利。

牛津大学在古迪纳夫当年实验室门外竖起了牌匾,纪念钴酸锂的发现。

但是日本不一样。

上世纪80年代,日本正处在经济腾飞期,大刀阔斧的日本商人甚至一度收购了好莱坞。日本产的电子产品也迅速占领着国际市场,西方不敢接的烫手山芋,日本人倒是想试试,要不然NEC也不会花大力气收购Moli。

不过这次站出来的幸运儿并不是NEC,而是当时凭借Walkman(随身听)和红白机风头正劲的索尼(Sony)。

1980年代末期的索尼手头已经发明了用作锂电池负极的石墨。这种石墨价格低廉,结构稳定,是十分理想的电极材料,只是苦于没有合适的正极与之匹配。古迪纳夫的钴酸锂简直如同一道光,照亮了索尼的前程。很快,索尼将钴酸锂和石墨结合,开发出了全新的可充电锂电池。整个电池中没有纯锂,因此安全性得到了很大提升。

由于电池中仅存在锂的离子状态,这类电池被称为锂离子电池(Lithium ion battery)。高性能,低成本,安全性好,这种锂离子电池一经问世立刻受到了欢迎,帮助索尼一跃成为行业老大。我们今天所使用的绝大部分锂离子电池仍然延续这一架构,25年来再没有大的改动,这种钴酸锂-石墨体系的性能之优异可见一斑。

钴酸锂使得古迪纳夫一跃成为炙手可热的化学家。

1986年,他回到了祖国,进入德克萨斯州大学奥斯丁分校,继续他的研究。当大家都以为这个教授准备在德州安心养老时,谁都没发现他已经将目光转向了另一个材料。

钴酸锂虽然储能性能好,安全性也不错,但是仍不是一个十全十美的材料。

一个原因是在长时间使用后,钴酸锂的层状结构容易崩塌,就好比汉堡中间的牛排被抽出,两层面包自然要塌到一起。崩塌的层之间无法再进行锂离子的存储,造成电池整体的性能衰减。

另一个原因是钴酸锂实在太贵。钴元素本身就是一种战略资源,产地只有非洲和美洲一些小国,随着锂离子电池日益兴盛,对钴的需求更是与日俱增,从而极大提高了钴酸锂的成本。

稳定性和高成本始终拦在钴酸锂的前方。直到1997年,古迪纳夫又一次让世界震动了。这一年,他拿出的材料叫做磷酸铁锂。

这年他75岁。

磷酸铁锂(LiFePO4),或者简称为LFP,在它的晶体结构中,铁与氧组成 FeO6 八面体,磷与氧组成 PO4 四面体,这些八面体与六面体按照一定规则构成骨架,形成Z 字型的链状结构,而锂原子则占据空间骨架中所构成的空位中[7]。

相较于钴酸锂的层状结构,LFP的空间骨架结构更稳定,锂离子在骨架的通道中也能快速移动。同时,LFP的成分是极其廉价的铁与磷,价格远低于钴。

虽然LFP也存在着不足之处,比如它的储能效果比钴酸锂要差一点,但它的稳定性和低成本迅速吸引了产业界的注意。

美国的A123 公司靠着生产LFP,一度成为全球锂离子电池产业的霸主。不过因为LFP的专利出现了问题,牵扯进了当时世界多家电池巨头,一度闹得人心惶惶,也造成LFP的推广之路磕磕绊绊。即便如此,LFP这类材料在未来储能领域,尤其是对低成本、稳定性要求高的应用中前景广阔。

磷酸铁锂晶体结构,其中白色的圆球表示锂原子,红色表示氧原子,紫色表示磷原子,黄色表示铁原子。

先有钴酸锂,后又有磷酸铁锂,古迪纳夫 “锂离子电池之父” 的称号当之无愧。此时的锂离子电池,早已成为各大电子消费品的主要组成,甚至连电动车也被囊括进了它的版图。

但别忘了,还有一个幽灵在盘旋,那就是枝晶问题。

钴酸锂和LFP虽然在一定程度上抑制了枝晶问题,但在电池的使用过程中,仍然会有部分锂原子沉积在电极表面,形成枝晶。所以,枝晶问题从未得到根本解决,安全隐患仍在。

可以说,锂枝晶问题贯穿了整个锂电产业的历史,至今仍盘旋在电池领域的心头,萦绕不去。而且,锂离子电池中所使用的电解液是一种有机物的混合液体,易燃易爆,这也是飞机等禁运锂离子电池的重要原因。

缺点如此明显的锂离子电池,实在不足以将人类引领到未来。所以,古迪纳夫又毅然投入到全新的电池研究中。他脑海中下一个可能改变世界的创新,就是全固态电池。

当做出这个决定时,他90岁。

全固态电池将原先的液态有机电解池换成一种全新的固态电解质。固态电解质不仅能够保证原有的储电性能,还能防止枝晶问题的产生,而且更安全,更廉价。

这个设想一直在古迪纳夫的脑海中盘旋,直到三年前,他偶然发现了一份来自葡萄牙的研究成果。这项研究宣称制备了一种玻璃,具有良好的锂离子传导能力,并且稳定性极好。这正是古迪纳夫想要的,于是他立即说服这位名叫布拉加的物理学家搬到奥斯汀,并立即将这种玻璃引入到全固态电池的研发中。

古迪纳夫认为这种玻璃是上帝赐予他的一个礼物:“就在我寻找着什么的时候,它走了进来。”

很快,古迪纳夫的全固态电池初见端倪,相关的研究成果已经被多个权威刊物报道[8,9]。虽然处于起步阶段,但古迪纳夫对这个方向充满了信心。毕竟,他已经95岁了,再也不会担心失业问题,研究就是他最大的快乐。

他很喜欢自己说的“爬行乌龟”的比喻,在接受媒体采访时,他还补充道[10]:“这种贯穿一生的爬行有可能带来好处,尤其是在你穿越不同领域,一路收集各种线索的情况下。你得有相当多的经验,才能把不同的想法融汇在一起。”

30岁,入行。

58岁,钴酸锂。

75岁,磷酸铁锂。

94岁,全固态电池。

今年他95岁,几乎得到了一个科学家能得到的所有荣誉。但是,古迪纳夫从来没觉得自己已经good enough了,他只是不断收集线索,继续向前。

95岁的古迪纳夫仍然在思考着新的研究课题

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

凭借更高电流能力及迷你尺寸,Bourns® NX 系列完美协助客户将产品尺寸缩小,且仍保持较高的过热保护

关键字: 电池 熔断器 断路器

电动汽车(EV)电池技术不断推陈出新,成为了支撑电动交通突飞猛进的关键汽车技术之一。2022 年,EV 电池组的平均成本为 153 美元/kWh,相当于 15 年间下降了 90%。

关键字: 电池 电动汽车 锂离子电芯

2024年3月13日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 即日起开售Nexperia的NEX1000xUB电源IC。这些新型、省空间、可编程、高...

关键字: LCD显示器 智能手机 电池

为工程师提供精确的数据,以找到出色的能量采集解决方案

关键字: 能量采集 电池 能量平衡计算器

美光通过专有固件功能提升数据密集型应用体验,进一步巩固在 UFS 4.0 移动存储领域的领导地位

关键字: 电池 智能手机 UFS

乘用车和商用车的电气化正在步入市场渗透的新阶段。从技术可行性论证转向大规模生产高端优质汽车,这种转变是显而易见的。技术商业化为我们带来了更优质、更实惠的汽车。

关键字: 电池 无线电池管理系统 电动汽车

Feb. 2, 2024 ---- 据TrendForce集邦咨询研究显示,1月全球锂电池市场仍低迷,电池厂商库存仍待去化,生产稼动率处低档徘徊,各类动力电芯产品均价(以下均以人民币计)跌势未止。其中,跌幅最大的为车用软...

关键字: 电池 动力电芯

在这篇文章中,小编将为大家带来笔记本电池的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 电池 笔记本电池

1节电池驱动热敏打印头的新解决方案,有助于应用产品更小、更轻、更节能

关键字: 打印机 电池

在通信基站中,电池是保障设备正常运行的关键组件。为了确保电池的可靠性和延长其使用寿命,对电池进行适当的保养与维护至关重要。本文将介绍各类通信基站电池的保养与维护方法。

关键字: 通信基站 电池
关闭
关闭