当前位置:首页 > 单片机 > 单片机
[导读]当前的嵌入式应用程序开发过程里,并且C语言成为了绝大部分场合的最佳选择。如此一来main函数似乎成为了理所当然的起点——因为C程序往往从main函数开始执行。但一个经常会被忽略的问题是:微控制器(单片机

当前的嵌入式应用程序开发过程里,并且C语言成为了绝大部分场合的最佳选择。如此一来main函数似乎成为了理所当然的起点——因为C程序往往从main函数开始执行。但一个经常会被忽略的问题是:微控制器(单片机)上电后,是如何寻找到并执行main函数的呢?很显然微控制器无法从硬件上定位main函数的入口地址,因为使用C语言作为开发语言后,变量/函数的地址便由编译器在编译时自行分配,这样一来main函数的入口地址在微控制器的内部存储空间中不再是绝对不变的。相信读者都可以回答这个问题,答案也许大同小异,但肯定都有个关键词,叫“启动文件”,用英文单词来描述是“Bootloader”。

无论性能高下,结构简繁,价格贵贱,每一种微控制器(处理器)都必须有启动文件,启动文件的作用便是负责执行微控制器从“复位”到“开始执行main函数”中间这段时间(称为启动过程)所必须进行的工作。最为常见的51,AVR或MSP430等微控制器当然也有对应启动文件,但开发环境往往自动完整地提供了这个启动文件,不需要开发人员再行干预启动过程,只需要从main函数开始进行应用程序的设计即可。

话题转到STM32微控制器,无论是keiluvision4还是IAR EWARM开发环境,ST公司都提供了现成的直接可用的启动文件,程序开发人员可以直接引用启动文件后直接进行C应用程序的开发。这样能大大减小开发人员从其它微控制器平台跳转至STM32平台,也降低了适应STM32微控制器的难度(对于上一代ARM的当家花旦ARM9,启动文件往往是第一道难啃却又无法逾越的坎)。

相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:

1、通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;

2、通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;

3、通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;

而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。

有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。

程序清单一:

;文件“stm32f10x_vector.s”,其中注释为行号

DATA_IN_ExtSRAM EQU 0 ;1

Stack_Size EQU 0x00000400 ;2

AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3

Stack_Mem SPACE Stack_Size ;4

__initial_sp ;5

Heap_Size EQU 0x00000400 ;6

AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7

__heap_base ;8

Heap_Mem SPACE Heap_Size ;9

__heap_limit ;10

THUMB ;11

PRESERVE8 ;12

IMPORT NMIException ;13

IMPORT HardFaultException ;14

IMPORT MemManageException ;15

IMPORT BusFaultException ;16

IMPORT UsageFaultException ;17

IMPORT SVCHandler ;18

IMPORT DebugMonitor ;19

IMPORT PendSVC ;20

IMPORT SysTickHandler ;21

IMPORT WWDG_IRQHandler ;22

IMPORT PVD_IRQHandler ;23

IMPORT TAMPER_IRQHandler ;24

IMPORT RTC_IRQHandler ;25

IMPORT FLASH_IRQHandler ;26

IMPORT RCC_IRQHandler ;27

IMPORT EXTI0_IRQHandler ;28

IMPORT EXTI1_IRQHandler ;29

IMPORT EXTI2_IRQHandler ;30

IMPORT EXTI3_IRQHandler ;31

IMPORT EXTI4_IRQHandler ;32

IMPORT DMA1_Channel1_IRQHandler ;33

IMPORT DMA1_Channel2_IRQHandler ;34

IMPORT DMA1_Channel3_IRQHandler ;35

IMPORT DMA1_Channel4_IRQHandler ;36

IMPORT DMA1_Channel5_IRQHandler ;37

IMPORT DMA1_Channel6_IRQHandler ;38

IMPORT DMA1_Channel7_IRQHandler ;39

IMPORT ADC1_2_IRQHandler ;40

IMPORT USB_HP_CAN_TX_IRQHandler ;41

IMPORT USB_LP_CAN_RX0_IRQHandler ;42

IMPORT CAN_RX1_IRQHandler ;43

IMPORT CAN_SCE_IRQHandler ;44

IMPORT EXTI9_5_IRQHandler ;45

IMPORT TIM1_BRK_IRQHandler ;46

IMPORT TIM1_UP_IRQHandler ;47

IMPORT TIM1_TRG_COM_IRQHandler ;48

IMPORT TIM1_CC_IRQHandler ;49

IMPORT TIM2_IRQHandler ;50

IMPORT TIM3_IRQHandler ;51

IMPORT TIM4_IRQHandler ;52

IMPORT I2C1_EV_IRQHandler;53

IMPORT I2C1_ER_IRQHandler;54

IMPORT I2C2_EV_IRQHandler;55

IMPORT I2C2_ER_IRQHandler;56

IMPORT SPI1_IRQHandler ;57

IMPORT SPI2_IRQHandler ;58

IMPORT USART1_IRQHandler ;59

IMPORT USART2_IRQHandler ;60

IMPORT USART3_IRQHandler ;61

IMPORT EXTI15_10_IRQHandler ;62

IMPORT RTCAlarm_IRQHandler ;63

IMPORT USBWakeUp_IRQHandler ;64

IMPORT TIM8_BRK_IRQHandler ;65

IMPORT TIM8_UP_IRQHandler ;66

IMPORT TIM8_TRG_COM_IRQHandler ;67

IMPORT TIM8_CC_IRQHandler ;68

IMPORT ADC3_IRQHandler ;69

IMPORT FSMC_IRQHandler ;70

IMPORT SDIO_IRQHandler ;71

IMPORT TIM5_IRQHandler ;72

IMPORT SPI3_IRQHandler ;73

IMPORT UART4_IRQHandler ;74

IMPORT UART5_IRQHandler ;75

IMPORT TIM6_IRQHandler ;76

IMPORT TIM7_IRQHandler ;77

IMPORT DMA2_Channel1_IRQHandler ;78

IMPORT DMA2_Channel2_IRQHandler ;79

IMPORT DMA2_Channel3_IRQHandler ;80

IMPORT DMA2_Channel4_5_IRQHandler ;81

AREA RESET, DATA, READONLY ;82

EXPORT __Vectors ;83

__Vectors ;84

DCD __initial_sp ;85

DCD Reset_Handler ;86

DCD NMIException ;87

DCD HardFaultException ;88

DCD MemManageException ;89

DCD BusFaultException ;90

DCD UsageFaultException ;91

DCD 0 ;92

DCD 0 ;93

DCD 0 ;94

DCD 0 ;95

DCD SVCHandler ;96

DCD DebugMonitor ;97

DCD 0 ;98

DCD PendSVC ;99

DCD SysTickHandler ;100

DCD WWDG_IRQHandler ;101

DCD PVD_IRQHandler ;102

DCD TAMPER_IRQHandler ;103

DCD RTC_IRQHandler ;104

DCD FLASH_IRQHandler ;105

DCD RCC_IRQHandler ;106

DCD EXTI0_IRQHandler ;107

DCD EXTI1_IRQHandler ;108

DCD EXTI2_IRQHandler ;109

DCD EXTI3_IRQHandler ;110

DCD EXTI4_IRQHandler ;111

DCD DMA1_Channel1_IRQHandler ;112

DCD DMA1_Channel2_IRQHandler ;113

DCD DMA1_Channel3_IRQHandler ;114

DCD DMA1_Channel4_IRQHandler ;115

DCD DMA1_Channel5_IRQHandler ;116

DCD DMA1_Channel6_IRQHandler ;117

DCD DMA1_Channel7_IRQHandler ;118

DCD ADC1_2_IRQHandler ;119

DCD USB_HP_CAN_TX_IRQHandler ;120

DCD USB_LP_CAN_RX0_IRQHandler ;121

DCD CAN_RX1_IRQHandler ;122

DCD CAN_SCE_IRQHandler ;123

DCD EXTI9_5_IRQHandler ;124

DCD TIM1_BRK_IRQHandler ;125

DCD TIM1_UP_IRQHandler ;126

DCD TIM1_TRG_COM_IRQHandler ;127

DCD TIM1_CC_IRQHandler ;128

DCD TIM2_IRQHandler ;129

DCD TIM3_IRQHandler ;130

DCD TIM4_IRQHandler ;131

DCD I2C1_EV_IRQHandler;132

DCD I2C1_ER_IRQHandler;133

DCD I2C2_EV_IRQHandler;134

DCD I2C2_ER_IRQHandler;135

DCD SPI1_IRQHandler ;136

DCD SPI2_IRQHandler ;137

DCD USART1_IRQHandler ;138

DCD USART2_IRQHandler ;139

DCD USART3_IRQHandler ;140

DCD EXTI15_10_IRQHandler ;141

DCD RTCAlarm_IRQHandler ;142

DCD USBWakeUp_IRQHandler ;143

DCD TIM8_BRK_IRQHandler ;144

DCD TIM8_UP_IRQHandler ;145

DCD TIM8_TRG_COM_IRQHandler ;146

DCD TIM8_CC_IRQHandler ;147

DCD ADC3_IRQHandler ;148

DCD FSMC_IRQHandler ;149

DCD SDIO_IRQHandler ;150

DCD TIM5_IRQHandler ;151

DCD SPI3_IRQHandler ;152

DCD UART4_IRQHandler ;153

DCD UART5_IRQHandler ;154

DCD TIM6_IRQHandler ;155

DCD TIM7_IRQHandler ;156

DCD DMA2_Channel1_IRQHandler ;157

DCD DMA2_Channel2_IRQHandler ;158

DCD DMA2_Channel3_IRQHandler ;159

DCD DMA2_Channel4_5_IRQHandler ;160

AREA |.text|, CODE, READONLY ;161

Reset_Handler PROC ;162

EXPORT Reset_Handler ;163

IF DATA_IN_ExtSRAM == 1 ;164

LDR R0,= 0x00000114 ;165

LDR R1,= 0x40021014 ;166

STR R0,[R1] ;167

LDR R0,= 0x000001E0 ;168

LDR R1,= 0x40021018 ;169

STR R0,[R1] ;170

LDR R0,= 0x44BB44BB ;171

LDR R1,= 0x40011400 ;172

STR R0,[R1] ;173

LDR R0,= 0xBBBBBBBB ;174

LDR R1,= 0x40011404 ;175

STR R0,[R1] ;176

LDR R0,= 0xB44444BB ;177

LDR R1,= 0x40011800 ;178

STR R0,[R1] ;179

LDR R0,= 0xBBBBBBBB ;180

LDR R1,= 0x40011804 ;181

STR R0,[R1] ;182

LDR R0,= 0x44BBBBBB ;183

LDR R1,= 0x40011C00 ;184

STR R0,[R1] ;185

LDR R0,= 0xBBBB4444 ;186

LDR R1,= 0x40011C04 ;187

STR R0,[R1] ;188

LDR R0,= 0x44BBBBBB ;189

LDR R1,= 0x40012000 ;190

STR R0,[R1] ;191

LDR R0,= 0x44444B44 ;192

LDR R1,= 0x40012004 ;193

STR R0,[R1] ;194

LDR R0,= 0x00001011 ;195

LDR R1,= 0xA0000010 ;196

STR R0,[R1] ;197

LDR R0,= 0x00000200 ;198

LDR R1,= 0xA0000014 ;199

STR R0,[R1] ;200

ENDIF ;201

IMPORT __main ;202

LDR R0, =__main ;203

BX R0 ;204

ENDP ;205

ALIGN ;206

IF :DEF:__MICROLIB ;207

EXPORT __initial_sp ;208

EXPORT __heap_base ;209

EXPORT __heap_limit ;210

ELSE ;211

IMPORT __use_two_region_memory ;212

EXPORT __user_initial_stackheap ;213

__user_initial_stackheap ;214

LDR R0, = Heap_Mem ;215

LDR R1, = (Stack_Mem + Stack_Size) ;216

LDR R2, = (Heap_Mem + Heap_Size) ;217

LDR R3, = Stack_Mem ;218

BX LR ;219

ALIGN ;220

ENDIF ;221

END ;222

ENDIF ;223

END ;224

如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:

? 第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:

#define DATA_IN_ExtSRAM 0

? 第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:

#define Stack_Size 0x00000400

? 第3行:伪指令AREA,表示

? 第4行:开辟一段大小为Stack_Size的内存空间作为栈。

? 第5行:标号__initial_sp,表示栈空间顶地址。

? 第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。

? 第7行:伪指令AREA,表示

? 第8行:标号__heap_base,表示堆空间起始地址。

? 第9行:开辟一段大小为Heap_Size的内存空间作为堆。

? 第10行:标号__heap_limit,表示堆空间结束地址。

? 第11行:告诉编译器使用THUMB指令集。

? 第12行:告诉编译器以8字节对齐。

? 第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。

? 第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)

? 第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。

? 第84行:标号__Vectors,表示中断向量表入口地址。

? 第85—160行:建立中断向量表。

? 第161行:

? 第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。

? 第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。

? 第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。

? 第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。

? 第202行:声明__main标号。

? 第203—204行:跳转__main地址执行。

? 第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。

? 第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。

? 第212行:定义全局标号__use_two_region_memory。

? 第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。

? 第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。

? 第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。

? 第224行:程序完毕。

以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:

1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。

2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。

3、标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。

4、第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。

至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转¬¬C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

嵌入式开发作为信息技术领域的重要分支,其涉及的语言种类繁多,各具特色。这些语言的选择取决于目标平台的特性、性能需求、开发者的熟练程度以及项目的具体要求。本文将详细介绍几种常见的嵌入式开发语言,包括C语言、C++、汇编语言...

关键字: 嵌入式开发 C语言

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器
关闭
关闭