当前位置:首页 > 单片机 > 单片机
[导读] 近期在法兰克福举办的国际超级计算大会上,涌现了很多令人兴奋的新技术,驱动着广泛应用于各行各业的人工智能和深度学习技术的发展。英特尔为人工智能技术的各个层面提供了一套广泛全面的产品组合,其中包括即将推出的英特尔®至强®可扩展处理器以及英特尔现场可编程门阵列(FPGA),还有即将推出的代号为Knights Mill的英特尔®至强融核™处理器,将深度学习技术提升到了一个新高度。

 近期在法兰克福举办的国际超级计算大会上,涌现了很多令人兴奋的新技术,驱动着广泛应用于各行各业的人工智能和深度学习技术的发展。英特尔为人工智能技术的各个层面提供了一套广泛全面的产品组合,其中包括即将推出的英特尔®至强®可扩展处理器以及英特尔现场可编程门阵列(FPGA),还有即将推出的代号为Knights Mill的英特尔®至强融核™处理器,将深度学习技术提升到了一个新高度。

近期在法兰克福举办的国际超级计算大会上,涌现了很多令人兴奋的新技术,驱动着广泛应用于各行各业的人工智能和深度学习技术的发展。英特尔为人工智能技术的各个层面提供了一套广泛全面的产品组合,其中包括即将推出的英特尔®至强®可扩展处理器以及英特尔现场可编程门阵列(FPGA),还有即将推出的代号为Knights Mill的英特尔®至强融核™处理器,将深度学习技术提升到了一个新高度。

英特尔®至强融核™处理器Knights Mill加速深度学习处理

这个英特尔至强融核系列的新成员是专门针对深度学习训练进行了优化,预计在2017年第四季度投产。该处理器旨在满足数据科学家、工程师以及所有致力于机器学习技术应用领域的用户独特需求。Knights Mill尤其能够通过充分利用低精度计算优势而大大缩短训练深度学习模型的时间。

为什么低精度如此重要?

简单地说,数据科学家需要硬件能够在训练模型时加速融合。在过去,深度学习模型可能要花上几天甚至几周的时间才能完成一个迭代的融合,这使得他们很难在有限的时间内进行研究。如今的硬件能够通过低精度计算把训练时间缩短到几个小时——这相当于加快了计算速度。只要硬件能满足深度学习框架的精度要求,那么最重要的就是看硬件训练模型的速度有多快。因此低精度计算可用于解决深度学习负载问题,并且与高性能计算相比是首选的计算方式,后者通常需要单或双精度运算性能。

那么Knights Mill和之前代号为Knights Landing的英特尔®至强融核™处理器有何不同呢?

我们经常听到专注于高性能计算、人工智能和机器学习的用户提出这个问题。

Knights Mill使用和Knights Landing相同的整体架构和分装,两个CPU都是第二代英特尔®至强融核™处理器,并使用相同的平台。区别就是Knights Mill使用不同的指令集来改进低精度性能,但牺牲了对许多传统高性能计算负载非常重要的双精度性能。这意味着Knights Mill适用于处理深度学习负载,而Knights Landing则更适合高性能计算负载以及其它要求高精度的运算。

这些不同的指令集被称作“四倍融合乘加指令”(QFMA:Quad Fused MulTIply Add)和“四倍虚拟神经网络指令”(QVNNI: Quad Virtual Neural Network InstrucTIon)。QFMA能把Knights Mill的单精度性能提高一倍,而QVNNI指令则可以进一步降低精度,同时满足深度学习框架的精度需求。把单精度性能提高一倍并进一步降低精度的结果将使Knights Mill相比Knights Landing能够为深度学习负载提供更高的运算性能。此外,频率、电源和效率方面的改善也推动了性能的提升,但是指令集变化才是性能显著提升的最大因素。

退一步说,Knights Mill处理器并不仅仅是为了加速深度学习负载,而且是在现有的基于英特尔技术的环境中获得新的处理功能。英特尔®至强融核™处理器平台二进制兼容英特尔®至强®处理器。几乎所有运行在英特尔®至强®处理器上的负载都能运行在英特尔®至强融核™处理器上,这就让用户可以轻松地在英特尔平台上共享软件投资。

另一方面,英特尔正在统一深度学习实践者在整个硬件平台上使用深度学习框架的前进道路。这些都是受益于英特尔® Nervana™ Graph把先进的功能带到深度学习框架。这个面向神经网络的计算和执行图让开发者能够在多个硬件对象上自动进行优化,从而让用户能够在不同的英特尔平台上共享其软件投资。

近年来英特尔不断延伸人工智能技术布局,收购深度学习和神经网络芯片与软件领域的领导厂商Nervana,通过一系列投资和英特尔至强、至强融核产品、FPGA相结合,提供全栈实力处理端到端数据。即将推出的英特尔®至强融核™处理器Knights Mill,更是显著加速深度学习处理,驱动人工智能领域的进一步发展。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭