当前位置:首页 > 芯闻号 > 充电吧
[导读]什么是语义分割?  语义分割指像素级地识别图像,即标注出图像中每个像素所属的对象类别。如下图:    左:输入图像,右:该图像的语义分割  除了识别车和骑车的人,我们还需要描绘出每个物体的边界。因此,

什么是语义分割?

  语义分割指像素级地识别图像,即标注出图像中每个像素所属的对象类别。如下图:

  

  左:输入图像,右:该图像的语义分割

  除了识别车和骑车的人,我们还需要描绘出每个物体的边界。因此,与图像分类不同,语义分割需要根据模型进行密集的像素级分类。

  VOC2012和MSCOCO是语义分割领域最重要的数据集。

  有哪些不同的解决方案?

  在深度学习应用到计算机视觉领域之前,人们使用TextonForest和随机森林分类器进行语义分割。卷积神经网络(CNN)不仅对图像识别有所帮助,也对语义分割领域的发展起到巨大的促进作用。

  语义分割任务最初流行的深度学习方法是图像块分类(patchclassification),即利用像素周围的图像块对每一个像素进行独立的分类。使用图像块分类的主要原因是分类网络通常是全连接层(fullconnectedlayer),且要求固定尺寸的图像。

  2014年,加州大学伯克利分校的Long等人提出全卷积网络(FCN),这使得卷积神经网络无需全连接层即可进行密集的像素预测,CNN从而得到普及。使用这种方法可生成任意大小的图像分割图,且该方法比图像块分类法要快上许多。之后,语义分割领域几乎所有先进方法都采用了该模型。

  除了全连接层,使用卷积神经网络进行语义分割存在的另一个大问题是池化层。池化层不仅扩大感受野、聚合语境从而造成了位置信息的丢失。但是,语义分割要求类别图完全贴合,因此需要保留位置信息。本文将介绍两种不同结构来解决该问题。

  第一个是编码器-解码器结构。编码器逐渐减少池化层的空间维度,解码器逐步修复物体的细节和空间维度。编码器和解码器之间通常存在快捷连接,因此能帮助解码器更好地修复目标的细节。U-Net是这种方法中最常用的结构。

  

  U-Net:一种编码器-解码器结构

  第二种方法使用空洞/带孔卷积(dilated/atrousconvolutions)结构,来去除池化层。

  

  Dilated/atrous卷积,rate=1是典型的卷积结构

  条件随机场(CRF)预处理通常用于改善分割效果。CRF是一种基于底层图像像素强度进行「平滑」分割的图模型。它的工作原理是灰度相近的像素易被标注为同一类别。CRF可令分值提高1-2%。

  

  CRF示意图。(b)一元分类器作为CRF的分割输入。(c、d、e)是CRF的变体,其中(e)是广泛使用的一种CRF

  下面,我将总结几篇论文,介绍分割结构从FCN以来的发展变化。所有这些架构都使用VOC2012评估服务器进行基准测试。

  论文概述

  下列论文按照时间顺序进行介绍:

  1.FCN

  2.SegNet

  3.DilatedConvolutions

  4.DeepLab(v1&v2)

  5.RefineNet

  6.PSPNet

  7.LargeKernelMatters

  8.DeepLabv3

  我列出了每篇论文的主要贡献,并稍加解释。同时我还展示了这些论文在VOC2012测试数据集上的基准测试分数(IOU均值)。

  FCN

  使用全卷积网络进行语义分割(FullyConvolutionalNetworksforSemanticSegmentation)

  2014年11月14日提交

  arXiv链接(https://arxiv.org/abs/1411.4038)

  主要贡献:

  推广端到端卷积网络在语义分割领域的应用

  修改Imagenet预训练网络并应用于语义分割领域

  使用解卷积层进行上采样

  使用跳跃连接,改善上采样的粒度程度

  相关解释:

  本论文的关键点是分类网络中的全连接层可视为使用卷积核覆盖整个输入区域的卷积操作。这相当于根据重叠的输入图像块评估原始分类网络,但由于计算过程由图像块的重叠部分共同分担,这种方法比之前更加高效。尽管该结论并非独一无二,但它显著提高了VOC2012数据集上模型的最佳效果。

  

  全连接层作为卷积操作

  将全连接层在VGG等Imagenet预训练网络中进行卷积操作后,由于CNN中的池化操作,特征图仍旧需要上采样。解卷积层不使用简单的双线性插值,而是学习所进行的插值。解卷积层又被称为上卷积(upconvolution)、完全卷积、转置卷积或微步卷积(fractionally-stridedconvolution)。

  但是,由于池化过程造成信息丢失,上采样(即使带有解卷积层)生成的分割图较为粗糙。因此我们可以从高分辨率的特征图中引入跳跃连接(shortcut/skipconnection)来改善上采样的粗糙程度。

  VOC2012基准测试分数:

  

  个人评价:

  这是一项重要的贡献,但是当前的技术水平又有了很大发展。

  SegNet

  SegNet:用于图像分割的一种深度卷积编码器-解码器架构(SegNet:ADeepConvolutionalEncoder-DecoderArchitectureforImageSegmentation)

  2015年11月2日提交

  Arxiv链接(https://arxiv.org/abs/1511.00561)

  主要贡献:

  将最大池化索引(Maxpoolingindices)转移到解码器,从而改善分割分辨率。

  相关解释:

  在FCN网络中,尽管使用了解卷积层和一些跳跃连接,但输出的分割图仍然比较粗糙。因此,更多的跳跃连接被引入FCN网络。但是,SegNet没有复制FCN中的编码器特征,而是复制了最大池化索引。这使得SegNet比FCN更节省内存。

  

  Segnet结构

  

  个人评价:

  FCN和SegNet都是最早出现的编码器-解码器结构。

  SegNet的基准测试分数不够好,不宜继续使用。

  空洞卷积(DilatedConvolutions)

  使用空洞卷积进行多尺度背景聚合(Multi-ScaleContextAggregationbyDilatedConvolutions)

  2015年11月23日提交

  Arxiv链接(https://arxiv.org/abs/1511.07122)

  主要贡献:

  使用空洞卷积,一种可进行稠密预测的卷积层。

  提出「背景模块」(contextmodule),该模块可使用空洞卷积进行多尺度背景聚合。

  相关解释:

  池化使感受野增大,因此对分类网络有所帮助。但池化会造成分辨率下降,不是语义分割的最佳方法。因此,论文作者使用空洞卷积层(dilatedconvolutionlayer),其工作原理如图:

  

  空洞/带孔卷积

  空洞卷积层(DeepLab将其称为带孔卷积)可使感受野呈指数级增长,而空间维度不至于下降。

  从预训练好的分类网络(此处指VGG)中移除最后两个池化层,之后的卷积层都使用空洞卷积。尤其是,pool-3和pool-4之间的卷积是空洞卷积2,pool-4后面的卷积是空洞卷积4。使用这个模块(论文中称为前端模块 frontendmodule)之后,无需增加参数即可实现稠密预测。另一个模块(论文中称为背景模块 contextmodule)将使用前端模块的输出作为输入进行单独训练。该模块是多个不同扩张程度的空洞卷积级联而成,因此该模块可聚合多尺度背景,并改善前端模块获取的预测结果。

  

  个人评价:

  预测分割图的大小是图像大小的1/8。几乎所有的方法都存在这个现象,通常使用插值的方法获取最终分割图。

  DeepLab(v1&v2)

  v1:使用深度卷积网络和全连接CRF进行图像语义分割(SemanticImageSegmentationwithDeepConvolutionalNetsandFullyConnectedCRFs)

  2014年12月22日提交

  Arxiv链接(https://arxiv.org/abs/1412.7062)

  v2 :DeepLab:使用深度卷积网络、带孔卷积和全连接CRF进行图像语义分割(DeepLab:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs)

  2016年6月2日提交

  Arxiv链接(https://arxiv.org/abs/1606.00915)

  主要贡献:

  使用带孔/空洞卷积。

  提出金字塔型的空洞池化(ASPP)

  使用全连接CRF

  相关解释:

  带孔/空洞卷积在不增加参数的情况下增大感受野。如上文中空洞卷积论文中所述,分割网络得到改进。

  将原始图像的多个重新缩放版本传递到CNN网络的并行分支(图像金字塔)中,或者使用采样率不同的多个并行空洞卷积层(ASPP),实现多尺度处理。

  结构化预测可通过全连接CRF实现。CRF的训练/微调需作为后处理的步骤单独进行。

  

  DeepLab2 流程图

  

  RefineNet

  RefineNet:使用多路径精炼网络进行高分辨率语义分割(RefineNet:Multi-PathRefinementNetworksforHigh-ResolutionSemanticSegmentation)

  2016年11月20日提交

  Arxiv链接(https://arxiv.org/abs/1611.06612)

  主要贡献:

  具备精心设计解码器模块的编码器-解码器架构

  所有组件遵循残差连接设计

  相关解释:

  使用空洞/带孔卷积的方法也有弊端。由于空洞卷积需要大量高分辨率特征图,因此其计算成本高昂,且占用大量内存。这妨碍了高分辨率预测的计算。例如,DeepLab的预测结果大小是原始输入图像的1/8。

  因此,这篇论文提出使用编码器-解码器结构。编码器是ResNet-101模块,解码器是RefineNet模块,该模块融合了编码器中的高分辨率特征和先前RefineNet模块中的低分辨率特征。

  

  RefineNet架构

  每一个RefineNet模块都有两个组件,一个组件通过对低分辨率特征进行上采样来融合多分辨率特征,另一个组件基于步幅为1、5x5大小的重复池化层来获取背景信息。这些组件遵循单位映射的思想,采用残差连接设计。

  

  RefineNet模块

  

  PSPNet

  金字塔型场景解析网络

  2016年12月4日提交

  Arxiv链接(

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

负责支持和保护网络生活的云服务提供商阿卡迈技术公司(Akamai),近日在其日益丰富的云产品阵容中又增添了一款基于NVIDIA GPU的媒体优化型产品。这款全新的云服务产品基于NVIDIA RTX 4000 Ada Ge...

关键字: 视频解码器

业内消息,近日高通公司宣布推出针对桌面平台的全新骁龙 X Plus 处理器。

关键字: 高通 骁龙 X Plus 处理器

近日,台积电在圣克拉拉年度技术研讨会上宣布首个“埃级”制程技术:A16。A16 是台积电首次引入背面电源输送网络技术,计划于 2026 年下半年开始量产。同时,台积电也在重新命名工艺节点,标志着「埃级」时代的开始。

关键字: 台积电 A16

4 月 25 日消息,4 月 25 日,国际数据公司(IDC)发布 2024 年第一季度中国手机市场跟踪报告,荣耀以 17.1% 的市场份额拿下第一,华为占 17.0% 位列第二,OPPO、苹果和 vivo 分别位列第三...

关键字: 荣耀 华为

业内消息, 近日华为全新Pura 70系列手机正式开售引发广大 数码爱好者追捧,但是有网友注意到这款手机的“AI修图”功能,竟然可以将照片中的人物衣服消除,并拍成视频发布网络。

关键字: 华为Pura70 华为

据韩媒报道,近日韩国多位军方人士透露,韩国军方正在考虑全面禁止在军事建筑内使用苹果手机,军方担心敏感信息通过录音泄露。

关键字: iPhone 苹果

为了满足日益增长的数据处理需求,铁威马NAS推出了全新的性能巅峰2024年旗舰之作F4-424 Pro,并搭载了最新的操作系统--TOS 6。这款高效办公神器的问世,无疑将为企业和专业人士带来前所未有的便捷与效率。

关键字: 存储 Linux 服务器

继“特斯拉开启万人大裁员”之后,如今又一家车企扛不住了!

关键字: 电动汽车

轻量级AI定制模型助力低成本快速部署 北京2024年4月18日 /美通社/ -- 数据和人工智能(AI)领域的领先者SAS—今日在SAS Innovate大会上首次展示了一款变革性的、旨在帮助企业直面业务挑战的解决方案...

关键字: SAS AI模型 人工智能 INNOVATE

领先的数据和AI平台SAS Viya运用大语言模型的可解释性和可集成性改善现有流程;SAS Data Maker将在保护敏感数据的同时解决关键挑战 北京2024年4月18日...

关键字: SAS VI 生成式AI MAKER
关闭
关闭