当前位置:首页 > 单片机 > 单片机
[导读]时钟初始化和GPIO概述:本实验的目的是了解用于执行对MSP430 Value Line设备的初始化过程的步骤。在这个练习中,您将编写初始化代码,并运行该设备使用各种时钟资源。1、写初始化代码2、运行CPU的MCLK的来源方式:VL

时钟初始化和GPIO

概述:

本实验的目的是了解用于执行对MSP430 Value Line设备的初始化过程的步骤。在这个练习中,您将编写初始化代码,并运行该设备使用各种时钟资源。

1、写初始化代码

2、运行CPU的MCLK的来源方式:VLO 、32768晶体、DCO

3、主体程序部分

4、观察LED闪光灯速度

MSP430时钟:

1、在MSP430单片机中一共有三个或四个时钟源:

(1)LFXT1CLK,为低速/高速晶振源,通常接32.768kHz,也可以接(400kHz~16Mhz);

(2)XT2CLK,可选高频振荡器,外接标准高速晶振,通常是接8Mhz,也可以接(400kHz~16Mhz);

(3)DCOCLK,数控振荡器,为内部晶振,由RC震荡回路构成;

(4)VLOCLK,内部低频振荡器,12kHz标准振荡器。

2、在MSP430单片机内部一共有三个时钟系统:

(1)ACLK,Auxiliary Clock,辅助时钟,通常由LFXT1CLK或VLOCLK作为时钟源,可以通过软件控制更改时钟的分频系数;

(2)MCLK,Master Clock,系统主时钟单元,为系统内核提供时钟,它可以通过软件从四个时钟源选择;

(3)SMCLK,Sub-Main Clock,系统子时钟,也是可以由软件选择时钟源。

Basic Clock Module Registers(基础时钟寄存器)

DCO control register DCOCTL

Basic clock system control 1 BCSCTL1

Basic clock system control 2 BCSCTL2

Basic clock system control 3 BCSCTL3

SFR interrupt enable register 1 IE1

SFR interrupt flag register 1 IFG1

3、MSP430的时钟设置包括3个寄存器,DCOCTL、BCSCTL1、BCSCTL2、BCSCTL3

DCOCTL,DCO控制寄存器,地址为56H,初始值为60H

DCO2

DCO1

DCO0

MOD4

MOD3

MOD2

MOD1

MOD0

DCO0~DCO2: DCO Select Bit,定义了8种频率之一,而频率由注入直流发生器的电流定义。

MOD0~MOD4: Modulation Bit,频率的微调。

一般不需要DCO的场合保持默认初始值就行了。

BCSCTL1,Basic Clock System Control 1,地址为57H,初始值为84H

XT2OFF

XTS

DIVA1

DIVA0

XT5V

RSEL2

RSEL1

RSEL0

RSEL0~RSEL2: 选择某个内部电阻以决定标称频率.0最低,7最高。

XT5V: 1.

DIVA0~DIVA1:选择ACLK的分频系数。DIVA=0,1,2,3,ACLK的分频系数分别是1,2,4,8;

XTS: 选择LFXT1工作在低频晶体模式(XTS=0)还是高频晶体模式(XTS=1)。

XT2OFF: 控制XT2振荡器的开启(XT2OFF=0)与关闭(XT2OFF=1)。

正常情况下把XT2OFF复位就可以了.

BCSCTL2,Basic Clock System Control 2,地址为58H,初始值为00H

SEM1

SELM0

DIVM1

DIVM0

SELS

DIVS1

DIVS0

DCOR

DCOR: Enable External Resistor. 0,选择内部电阻;1,选择外部电阻

DIVS0~DIVS1: DIVS=0,1,2,3对应SMCLK的分频因子为1,2,4,8

SELS: 选择SMCLK的时钟源, 0:DCOCLK; 1:XT2CLK/LFXTCLK.

DIVM0~1: 选择MCLK的分频因子, DIVM=0,1,2,3对应分频因子为1,2,4,8.

SELM0~1: 选择MCLK的时钟源, 0,1:DCOCLK, 2:XT2CLK, 3:LFXT1CLK

我用的时候一般都把SMCLK与MCLK的时钟源选择为XT2。

其它:

1. LFXT1: 一次有效的PUC信号将使OSCOFF复位,允许LFXT1工作,如果LFXT1信号没有用作SMCLK或MCLK,可软件置OSCOFF关闭LFXT1.

2. XT2: XT2产生XT2CLK时钟信号,如果XT2CLK信号没有用作时钟MCLK和SMCLK,可以通过置XT2OFF关闭XT2,PUC信号后置XT2OFF,即XT2的关闭的。

3. DCO振荡器:振荡器失效时,DCO振荡器会自动被选做MCLK的时钟源。如果DCO信号没有用作SMCLK和MCLK时钟信号时,可置SCG0位关闭DCO直流发生器。

4. 在PUC信号后,由DCOCLK作MCLK的时钟信号,根据需要可将MCLK的时钟源另外设置为LFXT1或XT2,设置顺序如下:

(1)清OSCOFF/XT2

(2)清OFIFG

(3)延时等待至少50uS

(4)再次检查OFIFG,如果仍置位,则重复(1)-(4)步,直到OFIFG=0为止。

(5)设置BCSCTL2的相应SELM。

实例分析

1、CPU运行在VLO时钟下:

这是最慢的时钟,在约12千赫兹下运行。因此,我们将通过可视化的LED闪烁的红色慢慢地在约每3秒钟率。我们可以让时钟系统默认这种状态,设置专门来操作VLO。我们将不使用任何ALCK外设时钟在此实验室工作,但你应该认识到,ACLK来自VLO时钟。

#include

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器

P1DIR = 0x40; // P1.6 配置输出

P1OUT = 0; // 关闭LED

BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO

IFG1 &= ~OFIFG; // 清除OSCFault 标志

__bis_SR_register(SCG1 + SCG0); // 关闭 DCO

BCSCTL2 |= SELM_3 + DIVM_3; // MCLK = VLO/8

while(1)

{

P1OUT = 0x40; // 开启LED

_delay_cycles(100);

P1OUT = 0; // 关闭 LED

_delay_cycles(5000);

}

}

2、CPU运行在晶振(32768Hz)时钟下:

晶体频率为32768赫兹,约3倍的VLO。如果我们在前面的代码中使用晶振,指示灯应闪烁大约每秒一次。你知道为什么32768赫兹是一个标准?这是因为这个数字是2的15次方,因此很容易用简单的数字计数电路,以每秒一次获得率 ——手表和其他时间时基。认识到ACLK来自外部晶振时钟。

#include

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器

P1DIR = 0x41; // P1.0 和P1.6配置输出

P1OUT = 0x01; // 开启P1.0

BCSCTL3 |= LFXT1S_0; // LFXT1 = 32768Hz 晶振

while(IFG1 & OFIFG)

{

IFG1 &= ~OFIFG; // 清除 OSCFault 标志

_delay_cycles(100000); // 为可见的标志延时

}

P1OUT = 0; // 关闭P1

__bis_SR_register(SCG1 + SCG0); // 关闭 DCO

BCSCTL2 |= SELM_3 + DIVM_3; // MCLK = 32768/8

while(1)

{

P1OUT = 0x40; // 开启 LED

_delay_cycles(100);

P1OUT = 0; / / 关闭LED

_delay_cycles(5000);

}

}

3、CPU运行在晶振(32768Hz)和DCO时钟下:

最慢的频率,我们可以运行DCO约在1MHz(这也是默认速度)。因此,我们将开始切换MCLK到DCO下。在大多数系统中,你会希望ACLK上运行的VLO或32768赫兹晶振。由于ACLK在我们目前的代码是在晶体上运行,我们会打开DCO计算。

#include

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器

if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)

{

while(1); // If cal const erased, 挂起

}

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ; //设置DCO模式

P1DIR = 0x41; // P1.0 和P1.6配置输出

P1OUT = 0x01; // P1.0 开启

BCSCTL3 |= LFXT1S_0; // LFXT1 = 32768Hz

while(IFG1 & OFIFG)

{

IFG1 &= ~OFIFG; // 清除OSCFault 标志

_delay_cycles(100000); // 为可见标志延时

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭