为什么有数控铣床?数控铣床发生故障,如何分析?
扫描二维码
随时随地手机看文章
数控铣床是在一般铣床的基础上发展起来的一种自动加工设备,两者的加工工艺基本相同。为增进大家对数控铣床的认识,本文将对数控铣床的产生背景以及数控铣床故障分析方法予以介绍。如果你对数控铣床具有兴趣,不妨继续往下阅读哦。
一、数控铣床产生的背景
随着社会生产和科学技术的迅速发展,机械产品日趋精密复杂,且需求频繁改型,特别是在宇航、造船、军事等领域所需的机械零件,精度要求高,形状复杂,批量小。加工这类产品需要经常改装或调整设备,普通机床或专用化程度高的自动化机床已不能适应这些要求。
为了解决上述问题,一种新型的机床——数控机床应运而生。这种新型机床具有适应性强、加工精度高、加工质量稳定和生产效率高等优点。它综合应用了电子计算机、自动控制、伺服驱动、精密测量和新型机械结构等多方面的技术成果,是今后数控机床的发展方向。
二、铣床故障征兆分析法
A.振动法
由于工业现场测试条件及分析技术所限,有些故障征兆的提取与分析不易实现,有些故障征兆反映的故障状态不敏感。相对来讲,数控铣床的振动是目前公认的机械部分最佳故障征兆提取量,它对运行状态的反应迅速、真实而且全面,能很好地反映出大部分数控铣床机械故障的性质与范围,并有许多先进有效的方法可供选用,所以振动法是数控铣床故障征兆分析法中最常用的方法。振动法分时域诊断与频域诊断两大类,而频域诊断又可分为振动频域直接分析法与振动频域二次分析法。
(1)振动时域分析法该法将各种故障状态的振动时域信号与正常状态的振动时域信号相比较,从而识别数控铣床的故障状况。时域分析法主要分时域统计分析法、时域相关分析法、时域同步分析法等。时域统计分析法通过求出振动信号的各种统计参数,对数控铣床的故障状况进行分析。时域相关分析法主要采用自相关与互相关分析,对数控铣床的故障状况进行分析。时域同步分析法是一种在混有噪声干扰的数控铣床信号中,提取周期性分量的有效疗法,也称相干检波去。
(2)振动频域直接分析法该法是数控铣床故障诊断上最常用的方法。它把以时间为横坐标的时域信号通过傅里叶变换分解为以频率为横坐标的频域信号,得出频谱图,求得关于原时域信号频率成分的幅值和相位信息,从而得出故障诊断结果。
(3)振动频域二次分析法该法通过对频谱图提供的信息进行进一步处理,以提高故障诊断的准确性。它需要把测得的频谱图传输给微机,用专用软件进行分析。二次分析法主要有功率谱分析法、倒频谱分析法、频率细化分析法和小波分析法等。
B.噪声谱分析法
该法在近声场测量时,引入的于扰较小,其分析结果与振动测量很接近。如数控铣床的齿轮磨损后,由于渐开线齿廓畸变而使齿轮运转噪声声压级明显升高,一般比正常齿轮噪声级差大十几分贝。噪声的频率一般较高,但对应的振动振幅可能并不大。如果振源零部件为运动部件,不易设置传感器,可考虑采用噪声谱分析法。噪声测量具有携带信息丰富、测试方便和非接触的特点,但应设法解决环境噪声的干扰问题。
C.油液分析法
该法通过监测润滑油液中磨屑的分布情况及润滑油的污染程度,来诊断数控铣床的磨损故障。其具体采用的方法有:
(1)磁塞检查法在数控铣床的油路系统中插入磁性探头(磁塞),以搜集油液中的铁磁性磨粒,并定期进行观察以判断数控铣床的磨损状态。
(2)颗粒计数器法利用光电技术对油样内的颗粒粒度进行自动计数和分析。
(3)油样光谱分析法根据油样中各种金属磨粒,在离子状态
下受到激发时所发射的特定波长的光谱,来检测油样中的金属类型和含量,从而对故障进行诊断。
(4)油样铁谱分析法它是一种在高梯度强磁场的作用下,将数控铣床摩擦副产生的磨粒从油样中分离出来,按其粒度大小依次排列沉淀到一块透明玻璃基片上,然后用各种手段观察或测量,以获得磨损过程的各种信息,从而分析磨损机理和判断设备磨损状态的一种分析方法。
以上便是此次带来的铣床相关内容,通过本文,希望大家对铣床已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!