当前位置:首页 > 单片机 > 单片机
[导读]Cortex-M0体系结构包括:系统模型、存储器映射、异常中断。这篇文章主要讲解Cortex-M0的系统模型。操作模式和状态如上图所示,Cortex-M0包括两种操作模式和两种状态Thumb状态(Thumb state)处理模式线程模式调试状态

Cortex-M0体系结构包括:系统模型、存储器映射、异常中断。这篇文章主要讲解Cortex-M0的系统模型。


操作模式和状态

如上图所示,Cortex-M0包括两种操作模式和两种状态

Thumb状态(Thumb state)

处理模式

线程模式

调试状态

  处理器启动后处于Thumb状态,在这种状态下,处理器可以处于线程模式和处理模式,线程模式时执行普通代码,处理模式时执行异常处理。线程模式和处理模式的系统模型几乎一模一样,唯一的不同在于线程模式通过配置CONTROL特殊寄存器,可以使用进程指针。

  调试状态仅用于调试操作,暂停处理器内核后,执行不会再执行。在这种状态下,调试器可以读取甚至改变内核寄存器的值。

  处理器上电后默认处于Thumb状态的线程模式,执行普通代码。


寄存器和特殊寄存器

  

  数据的解析和控制器的处理过程中,需要处理器内核寄存器的参与。如果需要处理控制器中的数据,这些数据需要先加载到处理器内核的寄存器(寄存器组中的摸个),处理完成后,如果有需必要,它们还会被送到存储器中,这种方式被称为“加载-存储架构”(load-store architecture)。

  Cortex-M0有13个32位通用寄存器R0-R12,以及多个特殊寄存器。

  寄存器组包含16个32位寄存器,其中13个时通用的,其余三个具有特殊用途。


R0-R12 通用寄存器

  R0-R12为32位通用寄存器,由于16位thumb指令集在空间上的限制,许多Thumb指令只能操作R0-R7,它们被称为低寄存器,而想MOV之类的一些指令则可以使用全部的寄存器。R0-R12寄存器的初始化值未定义。


R13,栈指针(SP)

  R13为栈指针,对栈空间进行存取操作(通过PUSH和POP指令),Cortex-M0在不同的物理地址上有两个栈指针,一个为主栈指针(MSP),也被称为SP_main,一个指针称为进程栈指针(PSP),也为称为SP_process,只能用在线程模式。可以通过CONTROL寄存器,选择使用那个栈指针。

  在ARM处理器中,由于寄存器是32位的,所以PUSH和POP指令永远是32位操作,而且存取地址是32位字对齐(32位对齐)。在处理器上电过程中,中断向量表的头4字节会被去除(中断向量表在0x000000000地址),然后填充到MSP,作为MSP的初始值,PSP的初始值为定义。

  一般使用操作系统是PSP进程栈指针才会被使用,这是因为操作系统内核的栈空间和线程级的应用程序的栈空间是相互独立的。


R14,链接寄存器(LR)

  R14为链接寄存器,用于存储子程序或者函数调用的返回地址。子程序或者函数执行完毕,存储在LR中的返回地址将被装在到程序计数器PC中,以便调用程序可以继续执行。当发生异常中断时,LR会提供一个特定值,用于中断返回机制。

  尽管Cortex-M0处理器的函数返回地址始终时偶数(最低位为0,因为最小的指令都是16位的),LR的0位时可读写的。为了指明当前处于thumb状态,一些指令需要函数地址最低位为1。


R15,程序计数器(PC)

  R15为程序计数器,为可读写。读操作返回当前正在执行的指令加上4(这是由流水线的特性决定的),而写入R15会导致程序跳转执行,这和函数调用不同,链接寄存器不会更新。

  Cortex-M0处理器指令是16位对齐的,所以PC寄存器的最低位必须始终为0.不过在使用跳转指令BX或者BLX执行跳转执行时,PC的最低位应该被置1,以表明目标分支处于thumb程序区域。如果试图切换到Cortex-M0未知的ARM状态,错误异常中断会被触发。


xPSR,组合程序状态寄存器

            xPSR寄存器

            xPSR寄存器

  组合程序状态寄存器提供了程序执行信息和ALU(算数逻辑单元)标志,改寄存器由三个程序状态寄存器(PSR)组成,如上图:

应用程序状态寄存器(APSR)

中断程序状态寄存器(IPSR)

执行程序状态寄存器(EPSR)

应用程序状态寄存器

  APSR包含了ALU算数逻辑单元标志,位于xPSR最高4位,一般用于控制程序跳转:

N表示负号标志

Z表示零标志

C表示进位或借位标志

V表示溢出标志

中断程序状态寄存器

  IPSR包含了当前正在执行的中断服务程序(ISR)编号,Cortex-M0的每个异常中断都会由一个特定的中断编号(表示中断类型)。这对调试时识别当前的中断非常有用,而且在多个中断共用一个中断处理的情况下,可以看出放生的时哪个中断。

执行程序状态寄存器

  EPSR包含了T位,该位用来表示当前是否处于Thumb状态。由于Cortex-M0处理器只支持Thumb状态,所以T位一般为1.清除该位(置零)后,执行吓一跳置零会触发硬件异常中断。


PRIMASK,中断屏蔽特殊寄存器

  PRIMASK仅有一位位宽,置位后,除了不可屏蔽中断(NMI)和硬件错误异常外的其他中断都会被屏蔽。实际上,此时当前中断优先级被置为0,也就是最高等级。

  要访问PRIMASK寄存器,可以通过特殊寄存器操作置零(MSR和MRS),也可以使用“改变处理器状态”置零(CPS)。在处理器对事件敏感的应用时,需要操作PRIMASK寄存器。


CONTROL,特殊寄存器

  前面已经提到,Cortex-M0处理器具有两个栈指针。处理器模式决定了使用的栈指针,而处理器模式以来与CONTROL寄存器的配置。

  复位以后,系统默认使用主栈指针,在线程模式下,通过配置CONTROL寄存器的第一位置1,处理器可以切换至使用进程栈指针(前提是当前不是处在异常中断处理中)。在处理异常中断时(运行在处理模式下),系统只能使用主栈指针,CONTROL寄存器读出的值为0。要改变CONTROL寄存器的值,应该在线程模式下进行操作,或者借助异常中断进入和返回机制。

  为了兼容Cortex-M3,CONTROL寄存器的0位保留。在Cortex-M3中,第0位用于将处理器切换至用户模式,这个特性在M0中没有。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

西门子数字化工业软件与 IBM(纽约证券交易所股票代码:IBM)日前宣布将进一步扩展合作伙伴关系,共同开发软件解决方案组合,集成各自在系统工程、服务生命周期管理及资产管理等领域的优势。

关键字: 系统模型 仿真驱动型系统 开放式生态系统

本文中,小编将对车联网予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 车联网 智能交通 体系结构

在下述的内容中,小编将会对智慧物流的相关消息予以报道,如果智慧物流是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 智慧物流 体系结构 物流

在这篇文章中,小编将为大家带来智能机器人的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 智能机器人 机器人 体系结构

摘 要 :针对目前工业大数据体系结构不完善、尚未形成标准统一的理论架构的问题,文中就如何将大数据技术与工业生产场景进行整合,如何建设工业大数据系统等问题展开了讨论。文中阐述了工业大数据的特点与基本体系结构,对相关技术处理...

关键字: 工业大数据 体系结构 处理体系 计算引擎 理论架构 计算分析

摘 要 :文中首先阐述了物联网的起源、概念及其体系结构,接着对物联网中的关键技术进行了介绍,最后列举了物联网技术在日常生活中的应用,让大家对物联网能有更深层次的理解与认识。

关键字: 物联网 体系结构 RFID 应用

摘要:车联网作为物联网技术的重要应用之一,具有十分广阔的应用前景。文章通辻介绍基于位置的车联网通用应用平台概念,分析了车联网通用应用平台的技术构架,并列举了该平台在几个重点领域的典型应用,给出了该平台所具有的通用性与相对...

关键字: 车联网 物联网 体系结构 典型应用

摘 要:随着基于物联网的智能家居系统的出现,人们对物联网的关注逐渐从概念发展到了技术应用。文中从物联网系统的三层体系结构出发,对智能家居系统加以分析,不仅理清了物联网与智能家居系统的关系,而且明确了智能家居系统的体系结构...

关键字: 物联网 智能家居 体系结构 技术路线

摘要:物联网的三层体系结构感知层、传输层和应用层与安防系统的数据采集、传输、应用三个主要部分有诸多相似之处,这种相似为公安院校安全技术防范课程教学实践提供了一个崭新的思路。文中对物联网的基本概念、数据感知、数据传输以及数...

关键字: 物联网 安全技术防范 教学实践 体系结构

摘要:物联网应用的多样性、分散性和缺乏管理等问题制约着物联网的发展。物联网要连接和管理的对象是包括静止和移动的末端设备及各种资产,这些设备连接上传感器等感知设备成为网络中的节点。基于物联网这种网络特点,利用通用网管的思想...

关键字: 物联网 体系结构 网络管理 综合信息管理平台
关闭
关闭