当前位置:首页 > 单片机 > 单片机
[导读]我用的红外遥控是使用的NEC协议,即使用PWM来调制发送的信息 NEC协议,其特征如下:1、8位地址和8位指令长度;2、地址和命令2次传输(确保可靠性)3、PWM脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;4、

我用的红外遥控是使用的NEC协议,即使用PWM来调制发送的信息

NEC协议,其特征如下:

1、8位地址和8位指令长度;

2、地址和命令2次传输(确保可靠性)

3、PWM脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;

4、载波频率为38Khz;

5、位时间为1.125ms或2.25ms;

NEC码的位定义:一个脉冲对应560us的连续载波,一个逻辑1传输需要2.25ms(560us脉冲+1680us低电平),一个逻辑0的传输需要1.125ms(560us脉冲+560us低电平)。而遥控接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑1应该是560us低+1680us高,逻辑0应该是560us低+560us高。

NEC遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。同步码由一个9ms的低电平和一个4.5ms的高电平组成,地址码、地址反码、控制码、控制反码均是8位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。


红外接收头与stm32连接如上图所示,既然是PWM调制,很容易想到了stm32的通用定时器的输入捕获和输出比较功能,这里由于stm32是接收红外遥控发送的信息,所以与红外接收头连接的IO口要设置位输入模式,因为在空闲状态的时候输入始终要保持高电平,所以要配置成上拉输入。

RCC->APB2ENR|=1<<3;

GPIOB->CRH&=0xffffff0f; //00:模拟输入模式//00:输入模式(复位后的状态)

GPIOB->CRH|=0x00000080; //10:上拉/下拉输入模式

GPIOB->ODR|=1<<9;//ODRy[15:0]:端口输出数据(y = 0…15) (Port output data)

//这些位可读可写并只能以字(16位)的形式操作。

因为PB.9是通用定时器的通道四,所以还要对定时器进行配置,额。。。好长时间没有用定时器了,都忘得差不多了,又得重新拾起来

void time4_init()

{

RCC->APB1ENR|=1<<2;//开启定时器四的时钟////?

TIM4->SR=0;//其实复位值就是0,多此一举了////状态寄存器

TIM4->DIER|=1<<4;//允许定时器四的捕获中断////1:允许捕获/比较4中断。

TIM4->PSC=71;//计数频率设置为1M CNT每增加一 ,时间为1us

////计数器的时钟频率CK_CNT等于fCK_PSC/(PSC[15:0]+1)。//72M/72=1M

TIM4->ARR=10000;//计数器每隔10ms溢出一次

////ARR包含了将要传送至实际的自动重装载寄存器的数值。////10000*1us=10ms

TIM4->CCMR2|=1<<8;//CC4通道被配置为输入,IC4映射在TI4上;

////01:CC4通道被配置为输入,IC4映射在TI4上;

TIM4->CCER&=~(1<<13);//通道四配置为上升沿捕获

////0:不反相:捕获发生在IC1的上升沿;当用作外部触发器时,IC1不反相。

TIM4->CCMR2|=3<<12;//进行滤波处理

////位15:12IC4F[3:0]:输入捕获4滤波器(Input capture 4 filter)

TIM4->CCER|=1<<12;//通道四捕获使能

////1:捕获使能。

TIM4->CR1|=1<<0;//定时器四计数使能

///1:使能计数器。

}

因为红外接收头接收的信号第一个数据必然是同步码,首先低电平保持9ms,然后一个跳变,高电平保持4.5ms,而我们判断接收的数据是逻辑0还是逻辑1,或者是同步码,都是要根据高电平的持续时间来判定的,所以要关心高电平保持时间,故定时器四初始化时要配置为上升沿捕获,好了,定时器也设置好了,接下来该设置定时器四的中断处理函数啦

对啦,要先把NVIC中的TIM4中断打开

void nvic_init()

{

NVIC->ISER[0]|=1<<30;//TIM4的中断编号为30/////?

}

void TIM4_IRQHandler(void)

{

if(TIM4->SR&0X10)//判断中断源是不是通道四捕获引起的

////当捕获事件发生时该位由硬件置’1’,它由软件清’0’或通过读TIMx_CCR1清’0’。

////1:计数器值已被捕获(拷贝)至TIMx_CCR1(在IC1上检测到与所选极性相同的边沿)。

{

led1=~led1;//信号指示灯,能比较直观的判断定时器四是否产生捕获中断

if(CS==1)//发生上升沿捕获在头文件里定义 #define CS PBin(9)

{

TIM4->CNT=0;//计数器清零

////计数器的值(Counter value

TIM4->CCER|=1<<13;//捕获中断触发方式改为下降沿

////1:反相:捕获发生在IC1的下降沿;当用作外部触发器时,IC1反相

TIM4->SR=0;状态标志位清零////状态寄存器

dcb=1;//一个数据位要先发生上升沿中断再发生下降沿中断,才能记录高电平持续时间

//所以一个数据位来说 两个中断必须是成对出现的////?

}

if(CS==0)//发生下降沿捕获

{

if(dcb==1)

{

dcb=0;//进门后要关门,不解释

TIM4->CCER&=~(1<<13);//改为上升沿捕获

////0:不反相:捕获发生在IC1的上升沿;当用作外部触发器时,IC1不反相

temp=TIM4->CCR4;//发生下降沿中断时CNT的计数值

////若CC4通道配置为输入:CCR4包含了由上一次输入捕获4事件(IC4)传输的计数器值。

if(3000

{

OK1=1;

}

if(1000

{

data=data<<1;

data|=1<<0;

ray_flag++;

}

if(300

{

data=data<<1;

data&=~(0<<0);

ray_flag++;

}

if(ray_flag>=32)//NEC协议一次发送的数据位为32位

OK2=1;

TIM4->SR=0;

}

}

}

}

中断服务程序配置好了,接下来就是中程序啦

int main()

{

Stm32_Clock_Init(9);

delay_init(72);

gpio_init();

nvic_init();

time4_init();

usart1_init();

while(1)

{

if(OK1==1&&OK2==1)

{

usart1_senddata(temp);

OK1=0;

OK2=0;

ray_flag=0;

}

}

使用的是串口打印数据,串口配置程序就不写啦

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭