首页 > 应用 > 单片机应用
[导读]pic单片机,想必大家都比较熟悉。其中,pic单片机简介、pic单片机优势以及pic单片机不足等内容,皆是入门级知识。本文将向大家介绍pic单片机的高级应用——将pic单片机的数据存储器RAM用作寄存器,本文存在一定难度,望大家用心研读。

pic单片机,想必大家都比较熟悉。其中,pic单片机简介、pic单片机优势以及pic单片机不足等内容,皆是入门级知识。本文将向大家介绍pic单片机的高级应用——将pic单片机的数据存储器RAM用作寄存器,本文存在一定难度,望大家用心研读。

u=3907135797,3963024372&fm=26&gp=0.jpg

PIC16C5X把数据存储器RAM都当作寄存器来使用以使寻址简单明洁,它们功能上可分为操作寄存器、I/O寄存器、通用寄存器和特殊功用寄存器。它们的组织结构如下图所示:这些寄存器用代号F0~F79来表示。F0~F4是操作寄存器,F5-F7是I /O寄存器,其余为通用寄存器。特殊功用寄存器地址对用户不透明。

image1.jpg

一、操作寄存器

1、F0间址寄存器

寻址F0实际上意味着间址寻址。实际地址为寄存器选择寄存器F4的内容。

例: MOVLW 10

MOVWF  f4    ;10→f4

MOVLW  55

MOVWF  f0    ;55→f10

2、F1实时时钟/计数寄存器(RTCC)

此寄存器是一个8位计数器。和其他寄存器一样可由程序进行读写操作。它用于对外加在RTCC引脚上的脉冲计数,或对内部时钟计数(起定时器作用)。

image2.jpg

上图中可看出RTCC工作状态由OPTION寄存器控制,其中OPTION寄存器的RTS位用来选择RTCC的计数信号源,当RTS为“1”时,信号源为内部时钟,RTS为“0”时,信号源为来自RTCC引脚的外部信号。OPTION寄存器的PSA位控制预分频器(Prescaler)分配对象,当PSA位为“1”,8位可编程预分配给RTCC,即外部或内部信号经过预分频器分频后再输出给RTCC。预分频器的分频比率由OPTION内的PS0~PS2决定。这时涉及写f1(RTCC)寄存器的指令均同时将预分频器清零。但要注意OPTION寄存器内容仍保持不变,即分配对象、分频比率等均不变。OPTION的RTE位用于选择外部计数脉冲触发沿。当RTE为“1”时为下降沿触发,为“0”时为上升沿触发。

RTCC计数器采用递增方式计数,当计数至FFH时,在下一个计数发生后,将自动复零,重新开始计数,以此一直循环下去。RTCC对其输入脉冲信号的响应延迟时间为2个机器周期,不论输入脉冲是内部时钟、外部信号或是预分频器的输出。

RTCC对外部信号的采样周期为2个振荡周期。因此当不用预分频器时,外加在RTCC引脚上的脉冲宽度不得小于2个振荡周期,即1/2指令周期。同理,当使用预分频器时,预分频器的输出脉冲周期不得小于指令周期,因此预分频器最大输入频率可达N.fosc/4,N为预分频器的分频比,但不得大于50MHz。

当RTCC使用内部时钟信号时,如果没有预分频器,则RTCC值随指令节拍增1。 当一个值写入RTCC时,接下来的二个指令节拍RTCC的值不会改变,从第三个指令节拍才开始递增,见下图。

image3.jpg

应注意的是尽管PIC对外部加于RTCC信号端上的信号宽度没有很严格的要求,但是如果高电平或低电平的维持时间太短,也有可能使RTCC检测不到这个信号。一般要求信号宽度要大于是10nS。

3、F2程序计数器(PC)

程序计数器PC可寻址最多2K的程序存储器。下表列出了PIC16C5X各种型号的PC长度和堆栈的长度。

image4.jpg

单片机一复位(RESET),F2的值全置为“1”。除非执行地址跳转指令,否则当执行一条指令后,F2(PC)值会动加1指向下一条指令。

下面这些指令可能改变PC的值:

a、“GOTO”指令。它可以直接写(改变)PC的低9位。对于PIC16C56/57/58,状态寄存器F3的PA1、PAO两位将置入PC的最高二位。所示“GOTO”指令可以跳转到程序存储器的任何地方。

b、“CALL”指令。它可以直接写PC 低8位,同时将PC的第9位清零。对于PIC16C56/57/58,状态寄存器F3的PA1、PAO两位将置入PC的最高二位(第10、11位)。

c、“RETLW”指令。它把栈项(堆栈1)的值写入PC。

d、“MOVWF F2”指令。它把W寄存器的内容置入PC。

e、“ADDWF F2”指令。它把PC值加1后再和W寄存器的值相加,结果写入PC。

在以上b、d和e中,PC的第9位总是被清为零。所以用这三条指令来产生程序跳转时,要把子程序或分支程序放在每页的上部地址(分别为000-0FF、200-2FF、400-4FF、600-6FF)。

4、F3状态寄存器(STATUS)

F3包含了ALU的算术状态、RESET状态、程序存储器页面地址等。F3中除PD和TO两位外,其他的位都可由指令来设置或清零。注意,当你执行一条欲改变F3 寄存器的指令后,F3中的情况可能出乎你的意料。

例:CLRF F3 ;清F3为零

你得到的结果是F3=000UU100(U为未变)而不是想像中的全零。UU两位是PD和TO,它们维持不变,而2位由于清零操作被置成“1”。所以如果你要想改变F3的内容,建议你使用BCF、BSF和MOVWF这三条指令,因为它们的执行不影响其他状态位。

例:MOVLW 0;0→W

MOVWF F3 ;把F3除PD和TO以外的位全部清零,则你可得到F3=000UU000。

有关各条指令对状态位的影响请看第二章介绍。

在加法运算(ADDWF)时,C是进位位。在减法运算(SUBWF)时,C是借位的反(Borrow)。

例:CLRF F10 ;F10=0

MOVLW 1 ;1→W

SUBWF F10 ;F10-W=0-1=FFH→F10

C=0:运算结果为负

例:MOVLW 1 ;1→W

MOVWF F10 ;F10=1

CLRW ;W=0

SUBWF F10 ;F10-W=1-0=1→F10

C=1:运算结果为正

image5.jpg

PD和TO两位可用来判断RESET的原因。例如判断RESET是由芯片上电引起的,或是由看门狗WDT计时溢出引起的,或是复位端加低电平引起的,或是由WDT唤醒SLEEP引起的。

表1.4列出了影响TO、PD位的事件。表1.5列出了在各种RESET后的TO、PD位状态。

image6.jpg

判断RESET从何处引起有时是很必要的。例如在对系统初始化时,经常需判断这次复位是否是上电引起的。如果不是上电复位,则不再进行初始化。

页面选择位PA1、PA0的作用前面已描述过,RESET时清PA0-PA2位为零,所以复位后程序区页面自动选择在0页。

5、F4 寄存器选择寄存器(FSR)

a、 PIC16C52/54/55/56

F4的0-4位在间接寻址中用来选择32个数据寄存器。5-7位为只读位,并恒为1。请参考F0寄存器描述。

b、PIC16C57/58

FSR《6:5》位用来选择当前数据寄存器体(Bank)。PIC16C57有80个数据寄存器,如图1.4所示。80个寄存器分为4个体(Bank0~Bank3),每个体的低16个寄存器的物理位置是相同的(参考§1.5.3通用寄存器的描述)。当FSR的第4位为“1”时,则要根据FSR《6:5》位来选择某个寄存器体中的某一个高16的寄存器。

image7.jpg

注意:当芯片上电复位时,FSR《6:5》是不定的,所以它可能指向任何一个Bank。而其他复位则保持原来的值不变。

 

二、I/O 寄存器

9-2.png

PIC16C52/54/56/58有二个I/O口RA、RB(F5、F6),PIC16C55/57有三个I/O口RA、RB、RC(F5、F6、F7)。与其它寄存器一样,它们皆可由指令来读写。它们是可编程双向I/O口,可由程序来编程确定每一根I/O端的输入/输出状态。

RESET后所有的I/O口都置成输入态(等于高阻态),即I/O控制寄存器(TRISA、TRISB、TRISC)都被置成“1”。

1、F5(A口)

4位I/O口寄存器。只能使用其低4位。高4位永远定义为“0”。

2、F6(B口)

8位I/O口寄存器。

3、F7(C口)

对于PIC16C55/PIC16C57,它是一个8位I/O口寄存器。

对于PIC16C54/56/58,它是一个通用寄存器。

§1.5.3 通用寄存器

PIC16C54/56:

07H~1FH

PIC16C55:

08H~1FH

PIC16C57/58:

08H-0FH:共有通用寄存器(无须体选择即可寻址)。

10H-1FH:Bank0的通用寄存器

20H-2FH:物理上等同于00H-0FH。

30H-3FH:Bank1的通用寄存器

40H-4FH:物理上等同于00H-0FH。

50H-5FH:Bank2的通用寄存器

60H-6FH:物理上等同于00H-0FH。

70H-7FH:Bank3的通用寄存器。

 

三、特殊功能寄存器

1-1.jpg

1、工作寄存器(W)

W用来存放两操作数指令中的第二个操作数,或用以进行内部数据传送。算术逻辑单元ALU把W和寄存器连接起来,ALU的运算结果通过总据总线可以送到W保存。

2、I/O控制寄存器(TRISA、TRISB、TRISC)

TRISA、TRISB、TRISC分别对应I/O口A、B、C。其中TRISA只有4位,和A口对应。执行“TRIS f”指令可把W的值置入I/O控制寄存器,以此来定义各I/O端的输入/输出态。当写入“1”时,将相应的I/O端置成输入态(高阻态),当写入“0”,则将相应的I/O端置成输出态。I/O控制寄存器都是只写寄存器,在RESET后自动置为全“1”,即所有I/O口都为输入态。

3、预设倍数/RTCC选择寄存器(OPTION)

OPTION可用于:

a、定义预分频器的预分频参数。

b、分配预分频器(Prescaler)给RTCC或WDT。注意预分频器只能分配给RTCC或WDT其中之一使用,不能同时分配。

c、定义RTCC的信号源。

d、定义RTCC信号源的触发沿(上升沿触发或下降沿触发)。

当预分频器分配给RTCC后,所有写RTCC寄存器的指令如CLRF 1、MOVWF 1等都会清除预分频器。同理,分配给WDT时,诸如CLRWDT和SLEEP指令将清除预分频器里已有的值使其归零。

通过执行“OPTION”指令可将W值置入OPTIOW寄存器,RESET后OPTION被置成全“1”。

换一批

延伸阅读

[半导体] 三星DRAM工厂突发断电停产 内存涨价又要来?

三星DRAM工厂突发断电停产 内存涨价又要来?

北京时间2020年1月1日消息,三星电子公司表示,在昨天下午发生大约一分钟的断电事故后,其华城芯片工厂的部分芯片生产已经暂停。三星在一份声明中表示,正在检查生产线以备重新启动,并正在评估造成的损失。据韩联社......

关键字:三星 DRAM 内存

[单片机应用] pic单片机高手篇,pic单片机多路ad切换程序+循环程序介绍

pic单片机高手篇,pic单片机多路ad切换程序+循环程序介绍

pic单片机是最重要的单片机种类之一,对于pic单片机,小编曾带来诸多介绍,如pic单片机的优势、pic单片机选型等。而在本文中,小编将为大家介绍两种pic单片机程序:一是pic单片机多路ad切换程序,二是pic单片机循环程序。如果你对这两......

关键字:pic单片机 多路ad 循环程序

[单片机应用] 细数pic单片机,pic单片机与51/AVR单片机IO操作

细数pic单片机,pic单片机与51/AVR单片机IO操作

pic单片机使用较多,因此学习pic单片机的人数也相对较多。对于pic单片机,它的优点众所皆知。此文对pic单片机的讲解在于介绍pic单片机的IO口操作。但本文不仅仅局限于pic单片机,同样将对51单片、AVR单片机IO操作加以介绍,一起来......

关键字:pic单片机 AVR单片机 IO操作

[单片机应用] pic单片机解惑篇,pic单片机、51单片机,谁更易于上手

pic单片机解惑篇,pic单片机、51单片机,谁更易于上手

pic单片机是学单片机人士必须掌握的一款单片机,对于pic单片机,小编层带来诸多介绍。如果你对pic单片机很感兴趣,不妨翻阅往期文章。本文对pic单片机的介绍内容为:pic单片机与51单片机,二者谁更易于学习,一起来了解下吧。......

关键字:pic单片机 51单片机 单片机

[半导体] 兆易创新:募集43亿元,最晚2025年量产首款DRAM芯片

兆易创新:募集43亿元,最晚2025年量产首款DRAM芯片

日前,据媒体报道,兆易创新将公司拟向不超过10名特定投资者非公开发行股票不超过64,224,315股(含本数),募集资金总额(含发行费用)不超过人民币432,402.36万元,用于DRAM芯片研发及产业化以及补充流动资金。......

关键字:兆易创新 DRAM芯片

[半导体] 105°C高温下可擦写1亿次 传三星1Gb eMRAM内存良率已达90%

105°C高温下可擦写1亿次 传三星1Gb eMRAM内存良率已达90%

今年3月份,三星宣布全球第一家商业化规模量产eMRAM(嵌入式磁阻内存),基于28nm FD-SOI(全耗尽型绝缘层上硅)成熟工艺,内存容量8Mb,可广泛应用于MCU微控制器、IoT物联网、AI人工智能领域。MRAM是一种非易失性存储,......

关键字:三星 eMRAM 内存

[智能硬件] LG笔记本新品

LG笔记本新品

这篇文章中,小编将为大家介绍LG旗下新出笔记本产品——LG gram 2-in-1。它的具体情况如何呢?一起来看看吧。......

关键字:LG 笔记本 gram

[单片机教程] 如何学习PIC单片机

如何学习PIC单片机

据统计,我国的单片机年容量已达1-3亿片,且每年以大约16%的速度增长,但相对于世界市场我国的占有率还不到1%。这说明单片机应用在我国才刚刚起步,有着广阔的前景。培养单片机应用人才,特别是在工程技术人员中普及单片机知识有着重要的现实意义。现......

关键字:PIC单片机 51系列单片机

[单片机应用] pic单片机高手实用篇,pic单片机程序设计

pic单片机高手实用篇,pic单片机程序设计

pic单片机在学习和工作中均扮演着重要角色,在往期文章中,小编曾对pic单片机汇编指令加以介绍,以帮助大家更好掌握pic单片机。而在本文中,将介绍pic单片机程序设计内容,以助大家写出更为优美的pic单片机程序,主要内容如下。......

关键字:pic单片机 程序设计 单片机

[单片机应用] pic单片机编程串烧,pic单片机汇编语言讲解下篇

pic单片机编程串烧,pic单片机汇编语言讲解下篇

看到这篇文章的朋友,想必大家对pic单片机均具备一定兴趣,或对pic单片机具备一定使用需求。前文中,小编曾对pic单片机汇编语言进行过部分讲解。本文中,将对pic单片机的清零等指令加以讲解,以帮助大家更好掌握pic单片机编程。......

关键字:pic单片机 汇编语言 指令

[单片机应用] pic单片机编程串烧,pic单片机汇编语言讲解上篇

pic单片机编程串烧,pic单片机汇编语言讲解上篇

pic单片机为最常用单片机之一,许多程序均基于pic单片机进行开发。因此,熟练pic单片机编程尤为重要。为保证大家能准确、熟练掌握pic单片机的使用,本文特带来pic单片机的各种汇编语言指令的讲解上篇,下篇将在后期文章中予以讲解。如果你对本......

关键字:pic单片机 汇编语言 单片机

[RFID] 富士通FRAM嵌入式系统存储

富士通FRAM嵌入式系统存储

富士通半导体,正是业界知名的FRAM方案提供商之一。在不久前的一次采访中,富士通电子元器件(上海)有限公司产品管理部总监冯逸新告诉笔者:“富士通FRAM的优势总结起来就是一组数据:10兆次、20年、37亿颗!10兆次代表了富士通FRAM产......

关键字:FRAM 数据存储 RFID

[单片机应用] pic单片机之大佬分享,三分钟了解pic单片机内部硬件资源

pic单片机之大佬分享,三分钟了解pic单片机内部硬件资源

pic单片机是这个时代的宠儿,而在往期pic单片机相关文章中,小编曾对pic单片机的I/O接口进行过阐述,但I/O并非pic单片机内部硬件资源的全部内容。因此在本文中,将对pic单片机的各种内部硬件资源加以介绍,以帮助大家全面掌握pic单片......

关键字:pic单片机 内部硬件资源 寄存器

[单片机应用] pic单片机的不老神话,搞定pic单片机I/O操作

pic单片机的不老神话,搞定pic单片机I/O操作

pic单片机是学习单片机人士必定接触的一款器件,因此大家对pic单片机或多或少具备一定了解。而在pic单片机学习过程中,pic单片机内部硬件资源接口是需要大家掌握的基本内容之一。其中,I/O更是pic单片机的实际基础操作。所以在本文中,将对......

关键字:pic单片机 I/O 控制器件

[单片机应用] pic单片机深度好文,pic单片机键盘原理详解

pic单片机深度好文,pic单片机键盘原理详解

在往期文章中,小编曾和大家共同分享过pic单片机I/O操作、pic单片机选型经验以及pic单片机中断模块等内容。在本文中,小编将对pic单片机的4×4行列式键盘的工作原理加以介绍,以帮助大家增进对pic单片机键盘系统的了解,方便后期编程使用......

关键字:pic单片机 键盘原理 单片机

我 要 评 论

网友评论

技术子站

更多

项目外包

更多

推荐博客